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1 Overview

In the last lecture we learned about state tomography. In this lecture we talked about a simple
tomography procedure and covered some proven and proposed bounds for tomography. Finally, we
introduced the Haar distribution and discussed its construction and complexity.

2 Review of Tomography

Given k copies of a n qubit mixed state ρ ∈ Cd×d with d = 2n, the task of tomography is to output
a classical description “σ” such that D(ρ, σ) 6 ε.

In the last lecture, we have seen that in order to perform tomography, we need at least Ω(d/log d) =
Ω(2n/n) copies of ρ. We obtained this lower bound by:

1. Calculating the maximum number of quantum states that can be packed into a d-dimensional
space such that the distance between any two states is at least 2ε; this number R gives rise to a
“quantum codebook” and logR determines the number of classical bits that can be conveyed
using this codebook.

2. Using Holevo’s theorem, which states that at most n classical bits can be reliably encoded
into n qubits, to obtain the minimum number of copies of ρ needed.

3 A Simple Tomography Algorithm

We introduced a simple tomography algorithm using Õ(d6) copies of ρ (Õ(·) denotes the upper
bound omitting log factors). This algorithm leverages the fact that every Hermitian matrix can be
expressed as a linear combination of Pauli matrices, which is proven in problem set 1. Using this
fact, ρ can be written as:

ρ =
∑

W∈{I,X,Y,Z}n
αWW1 ⊗ · · · ⊗Wn .

The idea of this algorithm is to estimate αW for all W ’s and use these αW ’s to obtain an approxi-
mation of ρ.

3.1 Algorithm of Pauli Tomography

This simple algorithm of Pauli tomography takes the following steps:
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1. Divide the input state ρ⊗k into 4n groups of ρ⊗t, where k = 4n · t.

2. For each W ∈ {I,X, Y, Z}n, use t copies to estimate αW . Recall from Problem set 1 that

αW = 2−nTr(ρW ) .

Call this estimate α̃W .

3. Compute the closest density matrix σ to σ̃, where σ̃ is obtained from the α̃W ’s by

σ̃ =
∑
W

α̃WW1 ⊗ · · · ⊗Wn .

Note that σ̃ is Hermitian, but it is not necessarily true that σ̃ is positive semidefinite and
Tr(σ̃) = 1, so σ̃ might not be a valid quantum state. Thus, the classical description “σ” is
obtained by computing the closest density matrix to σ̃.

3.2 Analysis

Suppose that a large enough t has been chosen so that |α̃W − αW | 6 η for all of the 4n different
W ’s. We want to find out how good the tomography result is by computing how far σ̃ is from ρ.
In particular, we want to calculate the trace norm ‖ σ̃ − ρ ‖1, which is a measure of the maximum
probability of distinguishing between σ̃ and ρ.

‖ σ̃ − ρ ‖1 =‖
∑
W

α̃WW −
∑
W

αWW ‖1=‖
∑
W

(α̃W − αW )W ‖16
∑
W

‖ (α̃W − αW )W ‖1

6
∑
W

|α̃W − αW | ‖W ‖16 η
∑
W

‖W ‖1= 4n · 2n · η = ε . (1)

Here, the first inequality follows from the triangle inequality, the second inequality follows from
the fact that (α̃W − αW ) is a number, and the last equality follows from the fact that there are
4n different W ’s in the sum and ‖ W ‖1=

∑
j
|λj | =

∑
j
| ± 1| = 2n, because W has 2n eigenvalues

λj = ±1.

However, the output of this simple tomography algorithm is σ rather than σ̃. Therefore, we want
to compute how far σ is from ρ.

‖ σ − ρ ‖1=‖ σ̃ − σ̃ + σ̃ − ρ ‖16‖ σ − σ̃ ‖1 + ‖ σ̃ − ρ ‖16 ε+ ε = 2ε . (2)

Here, the first inequality follows from triangle inequality. For the second inequality, we know from
(1) that ‖ σ̃ − ρ ‖16 ε, and since σ is the closest quantum state to σ̃, ‖ σ − σ̃ ‖16‖ ρ− σ̃ ‖16 ε, so
‖ σ − σ̃ ‖1 + ‖ σ̃ − ρ ‖16 ε+ ε = 2ε.

Now we have obtained a target distance of 2ε from (2), we want to work backwards to see how
large t needs to be in order to guarantee |α̃W − αW | 6 η for all of the 4n different W ’s. We start
by looking at the probability that |α̃W − αW | 6 η for a fixed W . Recall that

αW = 2−nTr(ρW ) . (3)

In Problem set 1, we have calculated that in order to output an estimate β such that

|β − Tr(ρW )| 6 τ . (4)
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with probability at least 1− γ, we need to input O(
1

τ2
ln

1

γ
) copies of ρ. This means that we need

t = O(
1

τ2
ln

1

γ
) . (5)

Now we want to calculate how small τ and γ can be. From (3) and (4), we can see that in order
for

|α̃W − αW | = |α̃W − 2−nTr(ρW )| 6 η ,

we need
τ 6 2n · η =

ε

4n
. (6)

On the other hand, we can figure out how small γ can be in terms of the total probability. Suppose
that we want to estimate |α̃W − αW | 6 η for all W ’s with probability 1− δ.

Pr[∃W such that |α̃W − αW | > η] 6
∑
W

Pr[|α̃W − αW | > η] = 4n · γ = δ . (7)

Here, the inequality follows from the union bound. The first equality follows from the fact that
there are 4n W ’s in the sum. From (7), we can obtain an expression of γ in terms of δ:

γ =
δ

4n
. (8)

Therefore, from (5), (6), and (8), we get

t = O

(
1

τ2
ln

1

γ

)
= O

((
4n

ε

)2

ln
4n

δ

)
= O

(
(4n)2

1

ε
n ln

1

δ

)
,

and

k = 4n · t = O

(
(4n)3

1

ε
n ln

1

δ

)
= Õ(d6) .

3.3 Complexity

We have just shown that the sample complexity (i.e. number of copies of the input state ρ needed)
of the aforementioned tomography algorithm is Õ(d6). What about its time complexity (i.e. how
much time it takes to process those copies of ρ)? The estimation procedure for αW clearly takes
poly(t, n) time, because it simply requires measuring each of the n qubits of t copies of ρ in a
different Pauli basis, and averaging the outcomes (as you determined in Problem Set 1). There are
4n different αW ’s to estimate, so the estimation process takes poly(4n, t, n) time.

The only potentially tricky part is the part about computing the closest density matrix σ to the
estimate σ̃. Actually, here we will argue how to find a “close-enough” density matrix σ (not
necessarily the closest). Essentially the basic idea is to truncate the negative eigenvalues of σ̃ and
rescale. This can be done using basic linear algebra: since σ̃ is a Hermitian matrix, it can be
diagonalized as

σ̃ =
∑
j

λ̃j |bj〉〈bj |
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for some basis {|bj〉}j and some eigenvalues (not necessarily all positive) {λj}j . Since there exists
a density matrix ρ that is ε-close to σ̃, this means that (a) the trace of σ̃ is close to 1 and (b) the
total mass of the negative eigenvalues of σ̃ cannot be large.

Lemma 1.
∑

j∈N |λ̃j | ≤ 2ε.

Proof. Let N = {j : λ̃j < 0} denote the indices of the negative eigenvalues of σ̃. Now, define P to
be the projector onto the span of {|bj〉}j∈N , in other words, the eigenvectors whose eigenvalues are
negative.

A useful variational characterization of the trace norm ‖X‖1 of a matrix X is the following:

‖X‖1 = max
M :‖M‖∞≤1

Tr(MX)

Here the maximization is over all matrices M whose maximum singular value (also known as the
operator norm) is at most 1. The projection P is such a matrix, so therefore

ε ≥ 1

2
‖ρ− σ̃‖1 =

1

2
max

M :‖M‖∞≤1
Tr(M(ρ− σ̃)) ≥ 1

2
Tr(P (ρ− σ̃)) =

1

2
Tr(Pρ)− 1

2
Tr(Pσ̃) .

Now Tr(Pρ) is a nonnegative number (because trace of the product of two positive semidefinite
matrices is nonnegative). We also have

Tr(Pσ̃) =
∑
j∈N

λ̃j < 0 .

Putting the previous two lines together we conclude that
∑

j∈N |λ̃j | ≤ 2ε as desired.

Lemma 2. 1− 2ε ≤
∑

j /∈N λ̃j ≤ 1 + 2ε.

Proof. We again use the variational characterization of the trace norm.

ε ≥ 1

2
‖ρ− σ̃‖1 =

1

2
max

M :‖M‖∞≤1
Tr(M(ρ− σ̃)) ≥ 1

2
Tr(ρ− σ̃) .

Since ρ is a density matrix, Tr(ρ) = 1. We then have Tr(σ̃) =
∑

j /∈N λ̃j −
∑

j∈N |λ̃j |. Rearranging,
we have ∑

j /∈N

λ̃j ≥ 1− 2ε+
∑
j∈N
|λ̃j | ≥ 1− 2ε

where we used our bound on the total mass of negative eigenvalues of σ̃. The proof of the upper
bound proceeds similarly.

Assuming these bounds, we can define our nearby density matrix σ by truncating the negative
eigenvalues of σ̃ and rescaling:

σ :=
1

β

∑
j /∈N

λ̃j |bj〉〈bj |
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where β =
∑

j /∈N |λ̃j |. This is clearly a density matrix: it is positive semidefinite (all its eigenvalues
are nonnegative) and it has trace 1. We just need to calculate how far σ is from σ̃:

‖σ − σ̃‖1 ≤

∥∥∥∥∥∥ 1

β

∑
j /∈N

λ̃j |bj〉〈bj | −
∑
j /∈N

λ̃j |bj〉〈bj |

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
j /∈N

λ̃j |bj〉〈bj | − σ̃

∥∥∥∥∥∥
1

=
∑
j /∈N

λ̃j

(
1− 1

β

)
+
∑
j∈N
|λ̃j |

≤ 4ε .

Performing this truncation and rescaling can be done in time that is polynomial in the dimension
of these matrices (this is something you can do in, say, Matlab).

Thus the overall time complexity of the tomography procedure is poly(d).

4 Tomography Bounds

We have already seen in class some upper and lower bounds on the number of copies, k, of a
quantum state ρ which are required for tomography. Specifically we have proven the lower bound
that we need at least

k ≥ Ω

(
d

log d

)
copies. And we have from our simple algorithm that we can achieve tomography for error parameters
ε, δ with no more than

O

(
d6 log d

1

ε2
log

1

δ

)
copies.

But much tighter bounds are known, and indeed we can say confidently that in general k = Θ
(
d2

ε2

)
copies are both required and sufficient, based on an upper bound from O’Donnell and Wright [1]
and a lower bound from Haah et al. [2]. However, the algorithm which achieves tomography using
this bound is quite complicated, and the best known runtime is exponential in the dimension (so
doubly-exponential in the number of qubits!). This leads us to a natural question:

Open Question: Can we achieve a poly(d) runtime with this optimal number of copies?

The answer to this is not currently known.

Practical Note: These bounds make a significant difference to physicists who are actually per-
forming tomography in the lab. Tomography of two qubits typically takes hours, and three or more
qubits may take days. So even small improvements to these bounds can have huge impacts.
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