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1 State Tomography

Quantum State Tomography refers to the following task: given k copies of a quantum state ρ
(denoted by ρ⊗k) and a precision parameter ε, output a classical description of a quantum state ρ′

such that
D(ρ, ρ′) ≤ ε

where D(·, ·) denotes the trace distance between two quantum states.

Figure 1: Quantum State Tomography

This problem naturally gives rise to the following questions:

1. Is state tomography possible with any number of copies of the quantum state?

2. What is the minimum number of copies necessary?

3. When can the process of Tomography be made efficient?

1.1 Difficulty of state tomography

In this lecture we explore the difficulty of state tomography, and show a lower bound on the number
of copies needed to accomplish the tomography task. To start off with, one would naturally ask
about whether state tomography is possible using a single copy of a quantum state; this would
be the most desirable and resource-efficient method if possible! However, intuition says that this
should not be possible because quantum states are extremely fragile: measuring the given copy of



a quantum state would cause it to collapse, irrevocably losing all information about the original
state.

We now argue that one copy is far from sufficient for tomography. In fact, one needs a number of
copies that scales with the dimension of the state, or equivalently one needs a number of copies
that grows exponentially in the number of qubits of the state.

Theorem 1. Any tomography algorithm for d-dimensional states that succeeds with error ε = 1
4

requires at least Ω(d/ log d) copies of the unknown input state.

The argument proceeds by showing that, if there was a too-good-to-be-true tomography procedure
(i.e. one that uses too few copies of a state), then one can obtain a too-good-to-be-true information
compression method, violating known results in quantum information theory.

More formally: let d = 2n and suppose there exists a tomography procedure that on input k copies
of an n-qubit quantum state |ψ〉⊗k outputs a classical description of a state vector |θ〉 such that

|| |ψ〉 − |θ〉 || ≤ ε

where ε = 1
4 . This would imply a quantum communication protocol for a person Alice to convey

a classical message to another person Bob using a “quantum codebook”, which we will describe
below.

Figure 2: Hypothetical Quantum Communication Protocol using Tomography

1.1.1 Protocol description

Before the protocol begins, Alice and Bob agree on an encoding scheme (also known as a quantum
codebook):

m ∈ {0, 1}r ⇐⇒ |ψm〉 ∈ Cd

on n-qubits. This encoding scheme should satisfy the following distance property : for all m 6= m′,
we have that

‖ |ψm〉 − |ψm′〉 ‖ ≥ 2ε .

We will indicate what r is shortly. But supposing that there is such a quantum codebook, Alice
can convey r bits of classical information to Bob by sending kn quantum bits as follows:

1. When Alice wants to convey a classical message m to Bob, she encodes the message using the
predetermined encoding scheme and then sends k copies of the n-qubit state |ψm〉 (so Bob
receives kn qubits in total.)
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2. Bob performs tomography on these kn qubits to obtain a classical description of a state |θ〉
such that

|| |θ〉 − |ψm〉 || ≤ ε

3. Referring the “codebook” defined by the decided encoding scheme, Bob outputs

m∗ = argmin
m
‖ |ψm〉 − |θ〉 ‖

and outputs m∗ as the message from Alice.

Due to the distance property, it must be that Bob can umambiguously recover m from |ψm〉⊗k,
because no other state in the codebook is within ε of |θ〉.

All that remains is for us to determine how large r can be. This problem can be stated as a packing
problem as follows:

1.1.2 Packing of quantum states

What is the largest number of quantum states that we can pack into d-dimensional space such
that all states are pairwise at least 2ε distance from each other? Consider the space of n-qubit
pure states, denoted by S

(
(C2)⊗n

)
, which can be thought of as a unit ball in d = 2n-dimensional

complex space.

Figure 3: Unit sphere of dimension d− 1 (since one degree of freedom is lost due to the unit vector
constraint)
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On this sphere, consider a “disc” of radius ε around each point/state such that only one point must
exist within such a disc.

First, we give an upper bound on the maximum number of such discs that can be packed on the
surface of the sphere. For simplicity, we consider the calculations in real space. The surface area
of a sphere of radius R in d− 1 dimensions is given by

Sd−1(R) =
2π

d
2

Γ(d2 − 1)
Rd−1

where Γ(n) = n! for integer n. Since the discs are sections of the unit sphere’s surface, their surface
area is at most the surface area of a sphere with the disc radius ε. In other words

Surface area of disc of radius ε ≤ Sd−1(ε) =
2π

d
2

Γ
(
d
2 − 1

)εd−1

Thus the number of discs of radius ε that can be packed on the surface of the unit sphere is at most

Sd−1(1)

Sd−1(ε)
=

1

εd−1
.

It turns out that this upper bound is tight up to a constant in the exponent.

Theorem 2. There exists at least
(

1
ε

)Ω(d)
states in S(Cd) that are pairwise 2ε distance from each

other.

This is a mind-bogglingly huge number; if we fix ε = 1
4 , then this number is going to be on the

order of 22Ω(d)
, which is doubly-exponential in n. You will prove a version of this bound on your

problem set.

1.1.3 Conclusion

Given this packing, this means that Alice can convey one of (1/ε)Ω(d) messages, or equivalently
communicate

r = log(1/ε)Ω(d) = Ω(d log
1

ε
) = Ω(d)

bits of information. Here, we used that ε is a constant.

That means that Alice is able to convey Ω(d) classical bits of information to Bob by sending over
kn qubits. However, there is a physical limit placed on this, which is enforced by Holevo’s theorem:

Theorem 3 (Informal statement of Holevo’s theorem). At most n bits of classical information can
be reliably encoded into n qubits.

Applying Holevo’s theorem to our hypothetical quantum communication using tomography, where
kn qubits are used to transfer Ω(d) = Ω(2n) bits of classical information, we have

kn ≥ Ω(d) =⇒ k ≥ Ω(d/n) = Ω(d/ log d) .

Hence, we see that an exponential number of copies of the encoded quantum state is necessary for
the communication, which is very expensive in terms of the physical resources required to realize
it.
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