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1 Overview

In this lecture, we discussed at length an example of a classical commitment scheme and its quantum
analogue. The key concepts from this lecture are

1. the definition of commitment schemes

2. the computational hiding property

3. the binding property

4. the role of PRGs and PRSs in (1-3)

This lecture builds directly on Lecture 9 by giving us an important use case for the pseudorandom
maps we defined there.

2 Definitions, Setup

We ended the first part of the lecture by going through the classical construction of commitment
schemes with pseudorandom generators. We will quickly recap this discussion before starting the
notes for the second part. In order to be self contained, we make the following definitions, which
will be relevant to the rest of the lecture.

Definition 1. (Classical PRG) A map G : {0, 1}n → {0, 1}m for m > n is a pseudorandom
generator (PRG) if it is computable in polynomial time and if, for all polynomial time distinguishers
D, ∣∣P(D(G(k)) = 1)− P(D(y) = 1)

∣∣ ≤ negligible(n).

Where negligible(n) is a function which goes to 0 faster than any polynomial, k is a n-bit string
picked uniformly at random, and y is an m-bit string picked uniformly at random.

Definition 2. (PRS) A map G : {0, 1}n → S((C2)⊗m) is a pseudorandom state generator if it can
be computed in polynomial time, and for all t = poly(n) and all polynomial time distinguishers, D,∣∣P(D(|ψk〉⊗t) = 1)− P(D(|θ〉⊗t) = 1)

∣∣ ≤ negligible(n).

Where G(k) = |ψk〉 for k sampled uniformly at random from {0, 1}n and where |θ〉 is a Haar random
state of size m.
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Definition 3. (Commitment Scheme) A commitment scheme is a two-phase cyptographic protocol,
that is, a pair of algorithms, C and R which describe a commit phase (C) and a reveal phase (R).
In the commit phase, one party commits to a bit b ∈ {0, 1}. They then randomly pick a key k
and use this k and the committed bit b to encode a message r. Finally, they transmit the encoded
message C(b, k, r) to the other party. In the reveal phase, the other party also receives b and k
and applies the other algorithm, R, to determine whether the bit b was used to encode the message.
The output of R is either pass or fail, depending on whether b could have been used to encode the
message. The algorithms C and R must satisfy a few properties:

1. Computational Hiding — For all messages r and keys k, C(0, k, r) and C(1, k, r′) must be
indistinguishable from the point of view of any polynomial time distinguishers D∣∣P(D(C(0, k, r)) = 1)− P(D(C(1, k, r)) = 1)

∣∣ ≤ negligible(n).

2. Binding — For all messages r and any two keys k, k′, it is not possible to adversarially chose
k and k′ such that the receiver could be convinced with high probability that both choices of b
pass

P(R(0, k, r, C(b, k, r)) = pass) + P(R(1, k′, r, C(b, k′, r)) = pass) ≤ 1− exp. small error.

Now we display the classical commitment scheme from earlier in the lecture. This construction sets
m = 3n. We are required to chose m to be reasonably large in order for our commitment scheme
to satisfy binding. This requirement will become apparent in the argument.

Commit Reveal

honest alice commits to bit b ∈ {0, 1} honest alice sends k and b to honest bob

honest bob samples a uniformly random honest bob
k,b←− honest alice

string r of length 3n sends it to honest alice
honest bob checks: if b = 0, is c = G(k)?

honest bob
r−→ honest alice and, if b = 1, is c = G(k)⊕ r?

honest alice picks a random key k of If both of these checks pass, honest bob
length n for G. She evaluates G(k), and believes b is the correct commitment (pass)

sets commitment c to G(k)⊕ (b · r)
Otherwise, he outputs an error (fail)

honest bob
c←− honest alice

3 Lecture 10 — Part 2

We want to show that our commitment scheme satisfies each of the required properties.

Claim 4. The commitment scheme above (2) satisfies computational hiding (1).
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Proof. We consider the case in which Alice is honest, and Bob cheats. cheating bob may have
picked a string in an adversarial way, so r may not be random. honest alice performs all of her
steps as usual, and transmits c to cheating bob. At this stage, cheating bob still does not know
what b is, because he does not know k. He knows he is seeing G(k) for some k which he does not
know, or G(k) ⊕ r. Both G(k) and G(k) ⊕ r look like uniformly randomly selected strings of size
m to cheating bob, because they pass through the pseudorandom generator, G.

Claim 5. The commitment scheme above (2) satisfies binding (2).

Proof. Now we consider the case where Bob is honest and Alice cheats. We fix c and, similarly, fix
r, assuming it was generated uniformly at random. We will use (kb, b) to denote cheating alice’s
message in the reveal phase. We want to evaluate the probability that cheating alice can
convince honest bob to believe the b she transmits. We denote by Eb the event in which honest
bob believes b,

P(E0) = P(c = G(k0)),

P(E1) = P(c = G(k1)⊕ r).

In the last equation, ⊕ is used to denote xor. Therefore, cheating alice’s total probability of
success is

P(E0) + P(E1) = P(E0) + P(E1|E0)P(E0) + P(E1|¬E0)P(¬E0)

≤ P(E0) + P(¬E0) + P(E1|E0)

= 1 + P(E1|E0).

We can further analyze the P(E1|E0) term. This probability conditions on c = G(k0) and requires
c = G(k1)⊕ r. Therefore, we can rewrite this term as

P(E1|E0) = P(G(k0)⊕G(k1) = r).

We consider the possible outcomes of G(k0)⊕G(k1). There are at most 22n possible inputs to this
expression. Consequently, there are at most 22n possible strings of the form G(k0)⊕G(k1). Since r
has length 3n, our final expression must include a multiplicative factor which gives the probability
that a randomly selected 3n-bit string will a set of size 22n. This probability is 22n/23n = 2−n.

The last calculation is where our choice of m = 3n was necessary. We could also have picked m to
be something larger.

Finally, we find P(E1|E0) ≤ 2−n. Thus, we have the bound P(E0)+P(E1) ≤ 1−exp. small error.

3.1 Quantum analogue of the commitment scheme

We define a new commitment scheme, described below. Instead of using a pseudorandom generator
(PRG), we use a pseudorandom state generator (PRS) (2) (which we also denote by G).
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Commit Reveal

honest alice commits to bit b ∈ {0, 1} honest alice sends b and k to honest bob

honest bob randomly samples two strings, honest bob
b,k←− honest alice

u, v ∈ {0, 1}n, and sends them to honest alice
If b = 0, honest bob checks |ψ〉 = G(k)

honest bob
u,v−→ honest alice If b = 1, honest bob checks |ψ〉 = XZG(k)

honest alice randomly samples k ∈ {0, 1}n
If b = 0, she computes c = G(k) = |ψ〉 If these checks pass, honest bob believes

If b = 1 she computes c = XuZvG(k) = |ψ〉 b is the correct commitment (pass)

honest bob
c←− honest alice Otherwise, he outputs an error (fail)

In the commitment scheme above m = 5n. This is required for the same reason that 3n was required
in the classical case (it will be necessary to show that our commitment scheme satisfies binding).
We also made use of the Pauli matrices X and Z. To understand their role in the commitment
scheme, we will discuss the Pauli matrices and their properties in greater detail.

3.2 Pauli matrix interlude

The Pauli matrices X and Z are 2× 2 matrices which act on qubits. The following equations are
definitions as 2× 2 matrices and a description of how X and Z act on |0〉 and |1〉.

X :=

(
0 1
1 0

)
, X|0〉 = |1〉, X|1〉 = |0〉,

Z :=

(
1 0
0 −1

)
, Z|0〉 = Z|0〉, Z|1〉 = −|1〉.

We randomly select two bits, u, v ∈ {0, 1}, and let |ψ〉 be an arbitrary state. Consider the result of
applying XuZv|ψ〉. It is a probabilistic mixture of states,

2−2
∑
u,v

XuZv|ψ〉〈ψ|ZvXu = 2−11.

In other words, this application of the product of Pauli matrices above completely scrambles the
original state.

Now we extend this for u, v ∈ {0, 1}m and |ψ〉 an m-qubit.

XuZv|ψ〉 := (Xu1Zv1)⊗ · · · ⊗ (XumZvm) |ψ〉.

If we choose u, v ∈ {0, 1}m randomly and average over all possible choices this will also result in a
completely scrambled state.

4−m
∑
u,v

XuZv|ψ〉〈ψ|ZvXu = 2−m1, (1)
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(in fact, (1) was the bonus result on the first homework).

The following lemma shows an important property of the Pauli matrices.

Lemma 6. If |α〉, |β〉 are m-qubit states and

Hu,v := |〈α|XuZv|β〉|2,

then
Pu,v(Hu,v > 2−m/2) ≤ 2−m/2.

This lemma essentially measures the size of the overlap between |α〉 and XuZv|β〉. The lemma
says that even if |α〉 and |β〉 start out as the same state, applying Xu and Zv will cause the
probability of reasonably sized overlap to be extremely small. We can interpret this to mean that
|α〉 and XuZv|β〉 are close to orthogonal with high probability. Before proving this lemma, we
state Markov’s inequality.

Theorem 7. (Markov) For a non-negative random variable X,

P(X > δ) ≤ E(X)

δ
.

Proof. (of Lemma 6) We rewrite

Hu,v = 〈α|XuZv|β〉〈β|ZvXu|α〉.

We can take the expectation

Eu,v(Hu,v) = 〈α|E (XuZv|β〉〈β|ZvXu) |α〉 = 〈α| 1

2m
1|α〉 =

1

2m
.

Applying Markov’s inequality finishes the argument:

P(Hu,v > 2−m/2) ≤ 2m/2/2m = 2−m/2.

3.3 Hiding and binding for the quantum algorithm

We prove the same properties for the quantum algorithm.

Claim 8. The quantum commitment scheme above (3.1) satisfies computational hiding (1).

Proof. When b = 0, honest bob sees G(k), which is a state generated by a pseudorandom state
generator, and when b = 1, honest bob sees XuZv|ψ〉. Since G(k) is given by a pseudorandom
state generator, this state is Haar random. Similarly, since XuZv|ψ〉 is unitarily invariant, we can
also conclude that it is Haar random.

The reveal phase of the commitment scheme requires honest bob to check whether something is
equal to |ψ〉. This motivates the question:
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|k〉

G

|ψ〉

0 0

· · · 0

0 0

Question 9. What does it mean to check whether a state is equal to G(k) in the quantum setting?

One possible answer is that we can run a quantum circuit on |ψ〉 which accepts with probability
|〈ψ|G(k)〉|2. An example of one circuit which performs this task appears below. It depicts the circuit
associated to the map G (as a black-box). If we are given a state |φ〉, we can run the circuit in
reverse and check whether we get k followed by zeros. The probability that this operation succeeds
is exactly the overlap |〈φ|G(k)〉|2, as we can see because |〈k|〈0 · · · 0|G−1|φ〉|0 · ··〉|2 = |〈ψ|φ〉|2.

Claim 10. The quantum commitment scheme above (3.1) satisfies binding (2).

Proof. (A sketch) We are in the situation where Alice cheats and Bob is honest. cheating al-
ice tries to convince honest bob she commited to a particular bit b ∈ {0, 1}. The probability
that honest bob believes that honest alice made commitment b is given by

P(E0) = |〈ψ|ψk0〉|2

P(E1) = |〈ψ|XuZv|ψk1〉|2

In this notation k1 is the revealed key that cheating alice uses when she tries to convince him
the commitment was b = 1, and similarly for k0 and b = 0. Likewise, |ψkb〉 is the state that
cheating alice sends to convince him she commited to b. E0 and E1 are the events, respectively,
that honest bob is convinced of b = 0 and b = 1. We want to evaluate whether

P(E0) + P(E1) = Eu,v
(
E|ψ〉,k0,k1

(
|〈ψ|ψk0〉|2 + |〈ψ|XuZv|ψk1〉|2

))
is bounded above by 1 + exp. small error.

The following is a sketch of the proof: We consider the case when |ψk0〉 and XuZv|ψk1〉 are orthog-
onal. In that case, the expectation in our equation is simply 1. Using our previous lemma (6), we
know that the states are nearly orthogonal with high probability. Specifically, the probability that
there exist k0 and k1 such that these states are not nearly orthogonal is

Pu,v (∃k0, k1||ψk0〉, XuZv|ψk1〉 not orthogonal) ≤ 22n2−m/2.

When |ψk0〉 and XuZv|ψk1〉 are nearly orthogonal we can bound the expectation term in our
expansion of P(E0) + P(E1) by 1 and something exponentially small. We won’t calculate this
explicitly right now, but will assume we can use 1 + 2−m/2. In that case

P(E0) + P(E1) ≤ 1 + 2−m/2 + 22n2−m/2 = 1 +O(22n2−m/2) = 1 +O(2−n/2)

The last step required that we chose a large enough m so that the final term is small enough.
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