
Quantum Information Basics

COMS 4281 (Fall 2024)



Admin

1. Pset1 released Sept 18. Due October 6. Start thinking about

forming problem set teams!

2. This week’s practice sheet is available on course homepage.

They will be discussed in office hours.

3. Weekly quiz is on gradescope tonight. Must complete it by

Sunday night at 11:59pm.
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Last Time: basics of a qubit

A qubit is a two-dimensional system, whose state is described by a

two-dimensional complex vector |ψ⟩ = α |0⟩+ β |1⟩ =

(
α

β

)
.

If a qubit in the state |ψ⟩ is measured, it collapses to the classical

state |0⟩ with probability |α|2 and the state |1⟩ with probability

|β|2.

A qubit can also undergo unitary evolution, and its state gets

updated |ψ⟩ 7→ U |ψ⟩ for some unitary matrix U.
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Last Time: basics of a qubit

Examples of unitary matrices:

• Identity: I =

(
1 0

0 1

)

• Bit-flip: X =

(
0 1

1 0

)

• Phase-flip: Z =

(
1 0

0 −1

)

• Hadamard: H = 1√
2

(
1 1

1 −1

)
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Last Time: basics of a qubit

The Hadamard gate turns a classical state into a quantum

superposition:

|+⟩ = 1√
2

(
|0⟩+ |1⟩

)
= H |0⟩

|−⟩ = 1√
2

(
|0⟩ − |1⟩

)
= H |1⟩ .

The measurement statistics of |+⟩ , |−⟩ look the same, so can

these states be distinguished?

Yes, by first applying a unitary, namely, the Hadamard matrix

again!

|0⟩ = H |+⟩ |1⟩ = H |−⟩ .
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Quantum vs classical bits, take 2

Consider Experiment A:

Circuit analysis: Do on board.
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Quantum vs classical bits, take 2

Consider Experiment A:

Final distribution of outcomes: |0⟩ , |1⟩ with equal probability.

Based on this, one might conclude that the Hadamard gate simply

creates a random classical bit!
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Quantum vs classical bits, take 2

Consider Experiment B:

Measure only at the end.

Circuit analysis: Do on board.
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Quantum vs classical bits, take 2

Consider Experiment B:

Final distribution of outcomes: |0⟩ always.

Inserting or removing intermediate measurement can

drastically change the behavior of a quantum system!.
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Quantum interference

Applying multiple unitary

operations to a qubit gives rise to

a tree of “paths” between states.

An edge between state |a⟩ to |b⟩
has a transition amplitude

associated with, depending on

the unitary.
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Quantum interference

Each path has associated

transition amplitude: product of

amplitudes along the path.

Before measurement, amplitude

of ending up in state |b⟩ is the
sum of transition amplitudes of

all paths that end at |b⟩.

Since transition amplitudes can

be negative or even complex, the

paths can constructively or

destructively interfere with each

other!
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Quantum interference

If there is an intermediate

measurement, only paths

consistent with the measurement

outcome are added up.
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Quantum interference

Takeway: Intermediate

measurements destroy

superpositions and prevent

interference!

In classical physics, we only add

up probabilities, which are

positive. In quantum physics, we

add up amplitudes, which can be

negative. Interference is an

example of ”quantum weirdness”.
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Summary of one qubit

1. A qubit state |ψ⟩ is a two-dimensional unit vector

2. Measuring qubits yields |0⟩ , |1⟩ with probabilities determined

by the Born rule.

3. State of qubit can also change via unitary matrices.

4. Positive and negative transition amplitudes lead to

interference.

5. Measurements disrupt interference.
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Dirac Notation



The |ψ⟩ notation is called Dirac notation, after the quantum

physicist Paul Dirac.

Mathematically, |ψ⟩ (“ket vector”) is a column vector.

|ψ⟩ =

(
α

β

)
= α |0⟩+ β |1⟩
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The dual/Hermitian conjugate of column vectors (i.e., row

vectors) are called “bra vectors”:

⟨0| =
(
1 , 0

)
⟨1| =

(
0 , 1

)

|ψ⟩ =

(
α

β

)
= α |0⟩+ β |1⟩ ⟨ψ| =

(
α β

)
= α ⟨0|+ β ⟨1|

α, β = complex conjugates of α, β.
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Let |ψ⟩ = α |0⟩+ β |1⟩ and |θ⟩ = γ |0⟩+ δ |1⟩ be column vectors.

Then we can take their inner product:

⟨ψ| |θ⟩ = ⟨ψ | θ⟩ =
(
α , β

)(γ
δ

)
= αγ + βδ

Note the order of |ψ⟩ and |θ⟩ matters!

⟨θ | ψ⟩ = γα+ δβ = ⟨ψ | θ⟩
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More generally, if

|ψ⟩ = α0 |0⟩+ α1 |1⟩+ · · ·+ αd−1 |d − 1⟩

|θ⟩ = β0 |0⟩+ β1 |1⟩+ · · ·+ βd−1 |d − 1⟩

are d-dimensional column vectors, then their inner product is

⟨ψ | θ⟩ = α0β0 + · · ·+ αd−1βd−1

Dirac notation is very useful for quickly identifying scalars, row and

column vectors, matrices in complicated expressions.

Naming: “bra” + “ket” = “bracket”
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Composite quantum systems

If qubit 1 is in state |ψ1⟩, and qubit 2 is in state |ψ2⟩, then the

joint state of both qubits is

|ψ1⟩ ⊗ |ψ2⟩

This is a four-dimensional unit vector in the tensor product space

C2 ⊗ C2.
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Hilbert spaces and tensor products

Quantum states live in a Hilbert space H. There’s a precise

mathematical definition, but for our purposes the important

aspects of Hilbert spaces are:

• Finite-dimensional Hilbert spaces are isomorphic to Cd for

some dimension d .

• There is an inner product operation between two vectors.

• You can take tensor products of Hilbert spaces.
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Hilbert spaces and tensor products

A: Hilbert space with orthonormal basis {|a1⟩ , . . . , |am⟩}

B: Hilbert space with orthonormal basis {|b1⟩ , . . . , |bn⟩}

A⊗ B is m × n dimensional Hilbert space with basis{
|ai ⟩ ⊗ |bj⟩

}
1≤i≤m,1≤j≤n

In general, an element of the Hilbert space A⊗B is a vector of the

form: ∑
1≤i≤m
1≤j≤n

αij |ai ⟩ ⊗ |bj⟩

where αij are complex numbers.
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Hilbert spaces and tensor products

The Hilbert space for two qubits is C2 ⊗ C2, with basis

|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩.

We can abbreviate this to

|0, 0⟩ |0, 1⟩ |1, 0⟩ |1, 1⟩
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Hilbert spaces and tensor products

If |ψ1⟩ = α |0⟩+ β |1⟩ and |ψ2⟩ = γ |0⟩+ δ |1⟩, then

|ψ1⟩ ⊗ |ψ2⟩ = αγ |0, 0⟩+ αδ |0, 1⟩+ βγ |1, 0⟩+ βδ |1, 1⟩ .

In general, a two-qubit state is some linear combination of

|0, 0⟩ , |0, 1⟩ , |1, 0⟩ , |1, 1⟩.

|ψ⟩ = a |0, 0⟩+ b |0, 1⟩+ c |1, 0⟩+ d |1, 1⟩ =


a

b

c

d


where a, b, c , d are complex numbers such that

|a|2 + |b|2 + |c|2 + |d |2 = 1.

22



Examples of two-qubit states

Example:

|0⟩ ⊗ |1⟩

Example:

|+⟩ ⊗ |−⟩ = 1

2

(
|0⟩+ |1⟩

)
⊗
(
|0⟩ − |1⟩

)
Example:

1√
2

(
|0, 0⟩+ |1, 1⟩

)
.

Example:

1√
6
|0, 1⟩ − 1√

6
|1, 0⟩+

√
2

3
|1, 1⟩ .
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Hilbert spaces and tensor products

Inner product between |φ⟩ =
∑

ij αij |i , j⟩ and |θ⟩ =
∑

ij βij |i , j⟩:

⟨φ|θ⟩ =
(∑

i ,j

αij ⟨i , j |
)(∑

k,ℓ

βkℓ |k , ℓ⟩
)
=
∑
i ,j

αijβij

The cross-terms ⟨i , j |k , ℓ⟩ = 0 if i ̸= k or j ̸= ℓ.
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Quantum entanglement

Not all states in C2 ⊗ C2 can be written as |ψ1⟩ ⊗ |ψ2⟩ (called
product states).

An example of an entangled state, called

Einstein-Podolsky-Rosen (EPR) pair or Bell pair.

|Φ⟩ = 1√
2

(
|0, 0⟩+ |1, 1⟩

)
Entanglement is a uniquely quantum phenomenon: one qubit is

intimately linked to another qubit in a way that classical physics

cannot explain.
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Measuring composite systems

|ψ⟩ =
∑

i ,j αij |i , j⟩ two-qubit state. Measuring |ψ⟩ yields

|i , j⟩ with probability |αij |2.

and state collapses to |i , j⟩.
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Unitary evolution of composite systems

If U,V are single-qubit unitaries acting on C2, then U ⊗ V is a

two-qubit unitary acting on C2 ⊗ C2:

U ⊗ V |ψ⟩ =
∑
i ,j

αij(U ⊗ V ) |i , j⟩ =
∑
i ,j

αijU |i⟩ ⊗ V |j⟩

Like with states, not all two-qubit unitaries W are product

unitaries.

Example of an entangling unitary: CNOT unitary.
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Unitary evolution of composite systems

CNOT gate can transform a product state to an entangled state:

CNOT |+⟩ ⊗ |0⟩ = (... do on board...)
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No-Cloning Theorem

Classical bits are easily copied. Quantum information is different.

No-Cloning Theorem: Quantum Info cannot be copied.

Formal statement: there is no two-qubit unitary U such that for

all single-qubit states |ψ⟩ ∈ C2,

U |ψ⟩ ⊗ |0⟩︸︷︷︸
ancilla

= |ψ⟩ ⊗ |ψ⟩
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No-Cloning Theorem Proof

Suppose there was a Quantum Cloner U. Then on one hand:

U |0⟩ ⊗ |0⟩ = |0⟩ ⊗ |0⟩.

and: U |+⟩ ⊗ |0⟩ = |+⟩ ⊗ |+⟩.

but unitary operators have to preserve inner products!
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No-Cloning Theorem Proof

So that means(
⟨0| ⊗ ⟨0|

)(
|+⟩ ⊗ |+⟩

)
=
(
⟨0| ⊗ ⟨0|

)(
|+⟩ ⊗ |0⟩

)
But left-hand side is: ⟨0|+⟩ · ⟨0|+⟩ = 1√

2
· 1√

2
= 1

2

and right-hand side is: RHS : ⟨0|+⟩ · ⟨0|0⟩ = 1√
2
· 1 = 1√

2

Contradiction!
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Exponentiality of Quantum Mechanics

The Hilbert space of n qubits is C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

= (C2)⊗n.

This is a 2n-dimensional Hilbert space. Each qubit doubles the

dimensionality of the space.

A general state can be written as

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩ .
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Exponentiality of Quantum Mechanics

Applying a unitary U to a state |ψ⟩ appears, mathematically, to be

doing exponentially many computations in parallel:

U |ψ⟩ =
∑

x∈{0,1}n
αxU |x⟩ .

Nature is doing an incredible amount of work for us.

But we can only access the exponential information in |ψ⟩ in a

limited way.
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Exponentiality of Quantum Mechanics

Quantum states are fragile, because of measurement. But

measurement is the only way for us classical beings to access the

information.

This leads to a fundamental tension in quantum computing.

Want to take advantage of Nature’s extraordinary computation

power, but it is hidden being a veil of measurement.
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