
Quantum Information Basics

COMS 4281 (Fall 2024)



Admin

1. Pset0 due Friday Sept 13, 11:59pm.

2. Pset1 out this weekend.

3. Update to class grading:

pset 0 5%

pset 1 10%

midterm 35%

pset 2 10%

final 35%

weekly quizzes 5%
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Weekly quizzes

• On most weeks, there will be a Gradescope quiz to help you

follow the class material. Released Monday morning, and

must be completed by the following Sunday night.

• Doable in ∼ 15 minutes if you understand the class material

to date.

• The quiz will be based on a weekly worksheet to help you

practice. The TAs will go over the worksheet in office hours.

• Questions on the midterm/final will also be based on the

worksheets.

• First worksheets/quiz released Monday, Sept 16.
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Last Time: classical reversible computing

d-dimensional systems:

• State labels: |0⟩ , . . . , |d − 1⟩.
• Transformations T : permutations on d labels

Composite systems using tensor product:

• If system A in state |x⟩, system B in state |y⟩, then joint

state is |x⟩ ⊗ |y⟩.

Can implement universal classical computation.
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Last Time: classical reversible computing, linear algebra-ized

States represented as column vectors:

|0⟩ =

1

0
...

 |1⟩ =

0

1
...

 · · · |d − 1⟩ =


...

0

1



Transformations are d × d permutation matrices, e.g.,

T =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0
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Last Time: classical reversible computing, linear algebra-ized

Updating a state |x⟩ by transformation T is matrix-vector

multiplication T |x⟩.

Tensor product of vectors and matrices corresponds to combining

states and transformations
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Making the quantum leap

A bit is a classical system with two distinguishable states |0⟩ , |1⟩,
also called Classical states, or standard basis states.

A qubit (quantum bit) can be in a superposition of the classical

states |0⟩ , |1⟩.
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Mathematically, states of a qubit are complex linear combination

of |0⟩ , |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩

= α

(
1

0

)
+ β

(
0

1

)

=

(
α

β

)
.

where α, β ∈ C are complex numbers satisfying |α|2 + |β|2 = 1.

In other words, |ψ⟩ is a two-dimensional unit vector in C2.
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Example: a qubit can be in the state

1√
2
|0⟩+ 1√

2
|1⟩ .
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Another example:

1√
2
|0⟩ − i√

2
|1⟩ = 1√

2

(
1

−i

)
.

A non-valid qubit state:

i |0⟩ − 1

2
|1⟩ .

9



Another example:

1√
2
|0⟩ − i√

2
|1⟩ = 1√

2

(
1

−i

)
.

A non-valid qubit state:

i |0⟩ − 1

2
|1⟩ .

9



So what is a qubit

A qubit in the state α |0⟩+ β |1⟩ is commonly said to be |0⟩ and
|1⟩ “at the same time”. But what does that mean?

α, β are like probabilities, except they can be negative or even

complex numbers!

α, β are called the amplitudes of the states |0⟩ and |1⟩,
respectively.
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Observing qubits

The state of a qubit cannot be directly observed. It must be

measured, yielding a classical state |0⟩ or |1⟩ with probabilities

Pr [ observing |0⟩ ] = |α|2 Pr [ observing |1⟩ ] = |β|2.

Because qubit states have unit length, these probabilities add up to

1.

This formula is called the Born Rule.
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Observing qubits

After measurement, the system becomes classical.

The state of qubit collapses to either |0⟩ or |1⟩, and the previous

state is lost.

In quantum mechanics, measurement generally disturbs the

system.

We represent qubit measurements using this diagram:
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Observing qubits

If the state collapses to the classical state |0⟩ and we measure it

again, it stays in state |0⟩ with probability 1. Same with

collapsing to |1⟩.

same as

Measuring a system twice is the same as measuring once.
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Example: Schrödinger’s cat

A box with two classical states:

sleeping cat: |0⟩ awake cat: |1⟩

In quantum mechanics, the box can be in a superposition of

sleeping and awake cat, as long as you don’t open the box (i.e.

measure it).

14



Example: Schrödinger’s cat

A box with two classical states:

sleeping cat: |0⟩ awake cat: |1⟩

In quantum mechanics, the box can be in a superposition of

sleeping and awake cat, as long as you don’t open the box (i.e.

measure it).
14



Example: Schrödinger’s cat

Suppose the box starts in the state 1√
3
|0⟩ − i

√
2√
3
|1⟩ and is

measured.

1. With probability
∣∣∣ 1√

3

∣∣∣2 = 1
3 , the state collapses to |0⟩ (i.e.,

sleeping cat).

2. With probability
∣∣∣− i

√
2√
3

∣∣∣2 = 2
3 , the state collapses to |1⟩ (i.e.,

awake cat).
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Transformations on qubits

In addition to measurement, the state of a qubit can change via a

unitary transformation. Just like transformations in classical

reversible computing, unitary tranformations can be represented as

matrices.

We represent a unitary transform U acting on state |ψ⟩ using the

following circuit diagram:
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Several equivalent definitions of unitary matrices

Definition 1. The inverse of U is its Hermitian conjugate U†,

pronounced “U dagger”, whose (i , j)’th entry is the complex

conjugate of the (j , i)’th entry of U:

U†
i ,j = U j ,i

Definition 2. U maps unit vectors to unit vectors (i.e. quantum

states to quantum states)

Definition 3. The rows of U form an orthonormal basis for Cd ,

and the columns form an orthonormal basis for Cd .

Definition 4. U preserves the inner products between vectors:

inner product between |ψ⟩ and |θ⟩ is the same as the inner product

between U |ψ⟩ and U |θ⟩.
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Examples of qubit unitary matrices

Identity matrix I =

(
1 0

0 1

)
For all qubit states |ψ⟩, I |ψ⟩ = |ψ⟩.
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Examples of qubit unitary matrices

Bit flip matrix X =

(
0 1

1 0

)
.

X |0⟩ = |1⟩ X |1⟩ = |0⟩

X (α |0⟩+ β |1⟩) = αX |0⟩+ βX |1⟩ = α |1⟩+ β |0⟩ .

So far, have only seen classical transformations.
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Examples of qubit unitary matrices

Phase flip matrix Z =

(
1 0

0 −1

)

Z |0⟩ = |0⟩ Z |1⟩ = − |1⟩

Z (α |0⟩+ β |1⟩) = α |0⟩ − β |1⟩ .
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Examples of qubit unitary matrices

Hadamard matrix H = 1√
2

(
1 1

1 −1

)

H |0⟩ = · · · (do on board) · · ·

H |1⟩ = · · · (do on board) · · ·

H maps classical basis states |0⟩ , |1⟩ into quantum superpositions.
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Quantum vs classical bits

What is the difference between

|+⟩ = 1√
2

(
|0⟩+ |1⟩

)
and

|−⟩ = 1√
2

(
|0⟩ − |1⟩

)
?

Measuring both states yields the same statistical outcomes:

|0⟩ , |1⟩ with 50% probability each!
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Quantum vs classical bits

Suppose we were physically handed a qubit (say Schrödinger’s box)

whose state |ψ⟩ was either |+⟩ or |−⟩. Is there a way we can tell

the difference?

Opening the box (i.e., measuring) would yield a sleeping or awake

cat with equal probability in both cases.
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Quantum vs classical bits

Solution: Apply H to qubit before measuring!

Case 1: |ψ⟩ = |+⟩. Applying H, we get

H |+⟩ = · · · (show on the board) · · · = |0⟩

Measuring yields |0⟩ all the time!
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Quantum vs classical bits

Solution: Apply H to qubit before measuring!

Case 2: |ψ⟩ = |−⟩. Applying H, we get

H |−⟩ = · · · (show on the board) · · · = |1⟩

Measuring yields |1⟩ all the time!
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Quantum vs classical bits

The states

|+⟩ = 1√
2

(
1

1

)

and

|−⟩ = 1√
2

(
1

−1

)
form an orthonormal basis for C2.
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Quantum vs classical bits

In quantum mechanics, orthogonal states can

be perfectly distinguished by applying an

appropriate unitary matrix and then

measuring in the standard basis.

The Hadamard matrix maps the
{
|+⟩ , |−⟩

}
basis to the standard

{
|0⟩ , |1⟩

}
basis (and

vice versa).
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Quantum vs classical bits

Takeaway: Minus signs in the amplitudes matter!

More precisely, relative phases between the classical basis states

matter.

On the other hand, global phases don’t matter.

There is no quantum process (unitary + measurement) to

distinguish between |ψ⟩ and − |ψ⟩, or in fact α |ψ⟩ for any complex

phase α = e iθ. Can you see why?
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