
COMS 4281 - Intro to Quantum Computing

Problem Set 5: Noise and Codes

Due: December 13, 11:59pm.

Collaboration is allowed and encouraged (teams of at most 3). Please read the syllabus

carefully for the guidlines regarding collaboration. In particular, everyone must write their

own solutions in their own words.

Write your collaborators here:

Problem 1: Limitations of Shor's code
Show that there are distinct two-qubit errors (unitaries acting on two qubits)

such that

where represent the logical state using the -qubit Shor code. This

shows that the Shor code is not capable of correcting more than error.

Solution

Problem 2: An error detection code

Shor's -qubit code can correct any single-qubit error on one of its qubits. Below we

give a -qubit code which can detect any single-qubit error on its qubits. By this we

mean that there is a detection circuit that determines if a single-qubit error has

occurred, but it can't necessarily identify which one has occurred.

The encoding map is as follows:

E1 ≠ E2

E1
∣
∣
¯̄̄0⟩ = E2

∣
∣
¯̄̄1⟩

∣
∣
¯̄̄0⟩ , ∣

∣
¯̄̄1⟩ |0⟩ , |1⟩ 9

1

9 9

4

∣
∣
¯̄̄0⟩ = (|00⟩ + |11⟩) ⊗ (|00⟩ + |11⟩)

∣
∣
¯̄̄1⟩ = (|00⟩ − |11⟩) ⊗ (|00⟩ − |11⟩) .

1

2
1

2

Problem 2.1

Give an example of two distinct single-qubit unitaries (which may act on

different qubits) such that

This shows that this code cannot uniquely identify single-qubit errors, because given

, one can't be sure whether the original state was or . However, in the next

few parts you will show that the code can still detect that some error has occurred.

Solution

Problem 2.2

Give a procedure (either as a quantum circuit or sufficiently detailed pseudocode) that

detects a \emph{bitflip} error on a single qubit of an encoded state . In

other words the procedure, if it's given a valid encoded state , returns and

outputs "No error", whereas if it's given where is the bitflip operation on

some qubit , then the circuit outputs " error somewhere".

Solution

Problem 2.3

Give a procedure (either as a quantum circuit or sufficiently detailed pseudocode) that

detects a phaseflip error on a single qubit of an encoded state .

Solution

Problem 2.4

Explain how to detect any unitary -qubit error on one of the qubits.

Solution

E1 ≠ E2

E1
∣
∣
¯̄̄0⟩ = E2

∣
∣
¯̄̄1⟩ .

E1
∣
∣
¯̄̄0⟩ ∣

∣
¯̄̄0⟩ ∣

∣
¯̄̄1⟩

α ∣
∣
¯̄̄0⟩ + β ∣

∣
¯̄̄1⟩

∣
∣
¯̄̄¯
ψ⟩ ∣

∣
¯̄̄¯
ψ⟩

Xi
∣
∣
¯̄̄¯
ψ⟩ Xi

i X

α ∣
∣
¯̄̄0⟩ + β ∣

∣
¯̄̄1⟩

1 4

Problem 3: Computing on encoded data

In this problem we explore the notion of logical gates: these are operations performed on

quantum data that is already protected by a quantum error-correcting code (such as

Shor's code). Ideally, one would like logical gates to be easier to perform than

unencoding, applying the desired gate, and re-encoding. Most ideally, the logical gate

should be transversal: if is an -qubit encoding of the logical single qubit and

is a logical single-qubit operation, then applying to should result in ,

where is some single-qubit gate. Transversal gates are nice because they don't

introduce any entanglement, and thus do not spread errors between qubits.

Problem 3.1

Consider the -qubit Shor code. How can you implement a logical (i.e. bitflip

operation) on the -qubit state that is the Shor encoding of ?

What about logical ?

Solution

Problem 3.2

Is there a transversal implementation of the logical (i.e. Hadamard) operation for the

-qubit Shor code? If there is, demonstrate it and show that it's correct. If not, prove that

there isn't.

Solution

Problem 3.3

Suppose are bits, and consider their Shor encodings . How can

you implement a logical CNOT between these two encoded states, i.e.:

Note that the encoded CNOT is an -qubit operation.

Hint: try a transversal implementation of CNOT.

∣
∣
¯̄̄¯
ψ⟩ n |ψ⟩ G

K⊗n ∣
∣
¯̄̄¯
ψ⟩

¯̄¯̄¯̄¯̄¯̄¯̄
G |ψ⟩

K

9 X

9 ∣
∣
¯̄̄¯
ψ⟩ |ψ⟩ = α |0⟩ + β |1⟩

Z

H 9

a, b ∈ {0, 1} ∣∣̄ ¯̄a⟩ , ∣
∣
¯̄
b⟩

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
CNOT(∣∣̄ ¯̄a⟩ ⊗ ∣

∣
¯̄
b⟩) =

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
CNOT |a, b⟩.

18

Hint: Try solving this problem for the bitflip and phaseflip codes first, before solving it for

the Shor code.

Solution

Problem 4: Circuits on noisy quantum
computers
The IBM Quantum Lab gives public access to a number of their quantum computers. In

this problem you'll get to play with them -- and see the effects of noise on your quantum

circuits.

Problem 4.1 - Benchmarking individual qubits

In this subproblem, we will benchmark individual qubits on (a simulation of) the 5-qubit

ibmq_essex device. A typical way to benchmark a qubit is to run a sequence of

randomly chosen single-qubit gates , and then running the reverse

sequence so that overall the effect should be the identity. Of course,

each gate will incur some noise, so the state of the qubit will drift over time. One can

measure the noise by measuring the qubit at the end of the sequence to see if it stayed

in the state.

You will write code to perform the following: for , for each qubit

, pick a sequence of gates where each is chosen

randomly from the gate set . Then, on qubit run the sequence

forward and then in reverse, and measure the qubit. Do this 1000 times and calculate the

percentage of times that the qubit ends back in the state.

Below, we've provided three functions. The first function, benchmark_qubit , requires
you to fill in some code, and it returns a QuantumCircuit object. The second

function, retrieve_job_results , takes an IBMQJob object and gets the

measurement counts. The third function, benchmark_qubit_job , is a wrapper
function around benchmark_qubit that runs it on a particular device and returns an

IBMQJob object. (The reason we're dividing this up into three steps is because later

we'll run these circuits on a real device).

g1, g2, … , gk

g−1
k

, g−1
k−1, … , g−1

1

|0⟩

k = 10, 20, 30, … , 100

q = 0, 1, 2, … , 4 g1, … , gk gi

{X, Y , Z, H} q (gi)

pq,k q |0⟩

In []: from qiskit import IBMQ, transpile
from qiskit import QuantumCircuit
from qiskit.providers.aer import AerSimulator
from qiskit.providers.fake_provider import FakeEssex
from qiskit.providers.jobstatus import JobStatus
from qiskit_ibm_provider import IBMProvider
from qiskit_ibm_runtime import QiskitRuntimeService

import numpy as np
from matplotlib import pyplot as plt

##########
This function takes as input
- q : qubit number 0 thru 4
- k : length of random gate sequence
#
Returns:
- the QuantumCircuit object corresponding to the circuit
##########
def benchmark_qubit(q, k):

 circ = QuantumCircuit(5, 1)

 ### WRITE CODE TO GENERATE THE RANDOM SEQUENCE OF LENGTH k, and ITS REVE

 ### END CODE BLOCK ###################

 # measure qubit q, and store it in classical register [0]
 circ.measure([q], [0])
 return circ

##########
This function takes as input
- job: the IBMQJob object corresponding to a circuit being executed
- blocking: if True, then this will wait until the circuit results are
(either fake or real). If False, then this will first check
#
Returns:
- if the job is done, then it returns the counts as a dictionary (e.g.,
otherwise if the job is still running or some other status, then it r
##########
def retrieve_job_results(job,blocking=True):

 #if it's blocking, then just go ahead and call result()
 if blocking:
 counts = job.result().get_counts(0)
 return counts
 else:
 #first, check the status
 job_status = job.status()

 if job_status is JobStatus.DONE:
 counts = job.result().get_counts(0)
 return counts
 else:
 print("The job ",job.job_id," has status: ",job_status)
 return None

##########
This function takes as input
- q : qubit number 0 thru 4
- k : length of random gate sequence
- shots: number of times to run and measure the sequence

Below, write code using benchmark_qubit_job , retrieve_job_results to get

the measurement counts and calculate for and

. Then, plot against (you can consult

https://www.geeksforgeeks.org/using-matplotlib-with-jupyter-notebook/ for an example

on how to plot graphs). You should have 5 plots in one graph.

Problem 4.2 - Estimating the single qubit gate noise

For each qubit , find a best function (linear, quadratic, exponential,...) that fits the

plots. For example, if the plot of against looks linear, then you should come up with

- device: the device to run on, either simulated or real
#
Returns:
- the IBMQJob object corresponding to the circuit
##########
def benchmark_qubit_job(q, k, shots, device):
 circ = benchmark_qubit(q,k)
 compiled_circuit = transpile(circ,device,optimization_level=0)
 job = device.run(compiled_circuit,shots=shots)
 return job

pq,k q = 0, 1, 2, 3, 4

k = 10, 20, 30, … , 100 pq,k k

In []:
fake_device = AerSimulator.from_backend(FakeEssex())

WRITE YOUR CODE HERE #################

#example code
q = 0
k = 100
shots = 1000
job = benchmark_qubit_job(q,k,shots,fake_device)
counts = retrieve_job_results(job)
print(counts)
#

#an example plot, change to display your data instead
for q in range(5):
 ks = np.arange(100)
 p_qks = [k*q + q*np.sin(k) for k in ks]
 plt.plot(ks, p_qks, label=f'q={q}')
plt.xlabel('k')
plt.ylabel('$kq + q sin(k)$')
plt.title('$kq + q sin(k)$ vs. k')
plt.legend()

plt.show()

END CODE BLOCK

q f(k)

pqk k

https://www.geeksforgeeks.org/using-matplotlib-with-jupyter-notebook/

parameters such that is close to . If it looks like exponential decay, then

you should find an approximate for some parameters .

This function can be used to give a simple model for how noise accumulates on each

qubit from single-qubit gates.

Solution

Problem 4.3 - Benchmarking entanglement
generation

Now we benchmark the quantum computer on more complex circuits that involve

entangling gates, which will generally be more noisy than single-qubit gates.

For each , let denote the -qubit GHZ state

When , this is simply the EPR pair we know and love. Let denote a circuit that

starts with zeroes and outputs .

Write code to do the same benchmarking as in Problem 4.1, except now we perform ,

then , then , and so on times. Ideally, all of these circuits would cancel out so

measuring all qubits will yield zero. However, the gates will be noisy so error will

accumulate as grows larger.

Let denote the percentage of times (out of 1000 shots) that doing and for

times yields all zeroes in the qubits. Plot versus for and for

. There should be 4 plots on one graph.

Important: the ibmq_essex device has a very particular connectivity of qubits:

You can only apply 2-qubit gates between the connected nodes. For exampe, you can

apply a CNOT between qubits 3 and 1, but not 3 and 2. Thus, when coding your circuit

, you may want to judiciously choose which qubits you use to maximize the

performance. The darker shading of a qubit means lower noise rate.

a, b pqk ak + b

f(k) = aebk + c a, b, c

r = 2, 3, 4, 5 |ψr⟩ r

.
|0⟩⊗r + |1⟩⊗r

√2

r = 2 Cr

r |ψr⟩

Cr

C −1
r Cr k

r

k

prk Cr C −1
r k

r prk k r = 2, 3, 4, 5

k = 10, 20, 30, … , 100

Cr r

In []: ##########
This function takes as input
- r : size of GHZ state
- k : length of random gate sequence
#
Returns:

Problem 4.4 - Estimating noise of the GHZ circuit

For each find a best function (linear, quadratic, exponential,...) that

fits the plots.

These functions can be used to give a simple model for how noise accumulates at a

global level for the GHZ circuit. How much worse is this than the single-qubit gates

situation?

- the QuantumCircuit object corresponding to the circuit
##########
def benchmark_circuit(r, k):

 circ = QuantumCircuit(5, r)

 ### WRITE CODE TO GENERATE C_r and its reversal k times ################

 ## You need to choose your subset of qubits carefully!

 ### END CODE BLOCK ###################

 ### WRITE CODE TO MEASURE AND COMPUTE P_RK #####################

 # measure r of the qubits , and store it in the r classical registers
 #for example, if r = 3, circ.measure([1,3,4],[0,1,2]) would mean measuri

 # <--- WRITE MEASUREMENT CODE HERE

 ### END CODE BLOCK ###################

 return circ

##########
This function takes as input
- r : size of GHZ state
- k : length of random gate sequence
- shots: number of times to run and measure the sequence
- device: the device to run on, either simulated or real
#
Returns:
- the IBMQJob object corresponding to the circuit
##########
def benchmark_circuit_job(r, k, shots, device):
 circ = benchmark_circuit(r,k)
 compiled_circuit = transpile(circ,device,optimization_level=0)
 job = device.run(compiled_circuit,shots=shots)
 return job

WRITE CODE TO CALL benchmark_circuit_job, retrieve_job_results AND PLOT

END CODE BLOCK

r = 2, 3, 4, 5 f(k)

Solution

Problem 4.5 - Running this on an actual quantum
computer

So far you've been running all this on a simulated version of the 5-qubit ibmq_essex
device (which has been retired). Now let's actually run it on a real quantum computer --

how exciting!

If you look at the available systems on https://quantum-

computing.ibm.com/services/resources, you will see that there are a number of devices

(ibm_brisbane , ibm_osaka , ibm_kyoto) with varying parameters, and with

different levels of busy-ness (some have more jobs in the queue than others).

For this problem, you will need to run this on the IBM Quantum Lab.

The next code will get the machines that are available to you:

Next, pick a machine to use. In our simulated code above, we choose ibmq_essex , but
you have to choose some other device (one of ibm_kyoto , ibm_osaka , or
ibm_brisbane). You should check https://quantum-

computing.ibm.com/services/resources to see which ones have the shortest line.

Now that you've loaded a device, now you can run the same code (benchmark_qubit
and benchmark_circuit) to create the quantum circuits that you want to run, except

this time you will transpile and run them on real_device -- your circuits will be run on

some real qubits somewhere in upstate New York! Your goal in this part of the problem is

to do the same benchmarking, and compare the results with simulation. Since time on

the IBM computers are limited, we only ask you to plot versus for just one of the

qubits, and to only plot versus for .

Unlike with the simulation code, you will create all of the circuits that you want to run

first, then transpile them all to real_device , and then create a single job that runs all

of your circuits together. (Be sure to test your code first in simulation before submitting

jobs to the IBM quantum machines!).

In []: provider = IBMProvider(instance="ibm-q/open/main")
provider.backends()

In []: real_device = provider.get_backend('your_device_name_here')
print('Max Circuits:',real_device.max_circuits)
real_device.status()

pqk k

prk k r = 3

https://quantum-computing.ibm.com/services/resources
https://quantum-computing.ibm.com/services/resources
https://quantum-computing.ibm.com/services/resources
https://quantum-computing.ibm.com/services/resources

Once you run your code, you can see the jobs being queued here:

https://quantum.ibm.com/jobs. If you need to, you can use their jobs manager interface

to cancel unwanted jobs.

First, write your code to benchmark qubits/circuits on the IBM device of your choosing.

Be sure to frequently check https://quantum.ibm.com/jobs to see whether your job are

still in progress or have finished.

Warning: If you execute it multiple times, it will resubmit the same jobs! We suggest

testing it out with one or two circuit jobs first before scaling up.

Note: The 127-qubit machines can only have 3 jobs queued at any time, so you have to

be patient about sending your jobs to collect all your data. Furthermore, you are only

allocated 10 minutes per month to run circuits on the 127-qubit machines. This entire

assignment should take ~10 seconds to run all the circuits for, but if you end up doing

lots of tests be careful not to exceed that limit.

If your Jupyter notebook is ever closed and you need to retrieve the result of your

compute jobs after a while, you can do so by looking up the Job ID on

https://quantum.ibm.com/jobs and using the following code:

Finally, plot the results just like you did with your simulations.

In []: circuits = []
WRITE CODE TO PREPARE ALL OF YOUR CIRCUITS HERE

END CODE BLOCK

These lines will run all of your circuits together in a single job
shots = 1000
compiled_circuits = [transpile(circ, real_device, optimization_level=0) for
batch_job = real_device.run(compiled_circuits, shots=shots)

print('Job ID:', batch_job.job_id())
job_id = batch_job.job_id()

In []: # This is to check your Job Status
service = QiskitRuntimeService()
job = service.job(job_id)
print(job.status())
###

In []: #if it's done, get the results from the following function
job.result().get_counts()

In []: ### PLOT THE REAL MACHINE DATA HERE ######################

https://quantum.ibm.com/jobs
https://quantum.ibm.com/jobs
https://quantum.ibm.com/jobs

How do the results from the actual hardware compare with simulation? Quantify the

differences, if any.

Solution

###

In []: ## Solution

