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1 Introduction

One of the most interesting properties of quantum states is that they cannot be perfectly replicated;
this is a foundational result in quantum information theory known as the no-cloning theorem. An
active area of research has developed with the goal of leveraging this property for the creation of
quantum money, i.e. money which somehow contains or is represented by a quantum state, and
hence cannot be counterfeited. This concept was first proposed by Wiesner [Wie83], and later
expanded upon by Aaronson [Aar09]. As technology for quantum computing matures, research in
quantum money becomes increasingly relevant. Not only does quantum money provide a practi-
cal application of quantum computing, it also provides an environment for exploring concepts of
quantum information processing.

The remainder of this report will proceed as follows. First, we will discuss some of the motivations
and suggested applications of quantum money schemes, as well as a related area of research spurred
by investigations into quantum money. Second, we will provide an overview of some of the first
seminal results in quantum money research. Third, we will discuss some examples of recent work
investigating public-key quantum money schemes.

2 Applications and Related Areas

The most obvious application of quantum money is in the name: creating money that is com-
putationally inefficient to replicate. Note that an adversary with infinite computing power can
break any quantum money scheme by simply trying to authenticate all possible serial numbers and
quantum states. While Wiesner’s construction requires users to go to the bank every time they
want to verify a banknote, so-called public-key quantum money would allow anyone to perform
authentication. This unclonable property can also be used to protect important documents such as
identity cards, passports, and birth certificates. However, a major challenge currently preventing
the implementation of any quantum money scheme is the limitations of our current technology for
maintaining quantum states. Quantum money would be useless if the states used decohered within
a matter of seconds.

While quantum money schemes may not be practical in the foreseeable future, concepts from these
areas of research can contribute to quantum information processing. They provide a model to
explore the implications of the uncertainty principle and no-cloning theorem. Therefore, research
in this fields can yield insight into many other areas of theoretical quantum computing. Results
from quantum money research have also generated a related area of quantum copy-protection,
which we will describe in more detail.

2.1 Quantum Copy-Protection

Modern computer programs can be easily pirated, since classical bits can easily be replicated. How-
ever, as mentioned, arbitrary qubit states have the special property of being unclonable. Aaronson
proposes to use this property to create software which cannot be replicated [Aar09]. To accom-
plish this, he proposes the idea of quantum copy-protection of point functions: Boolean functions
that return “1” if the input is equal to a secret string, and ”0” otherwise. Point functions can be
used to produce password-authentication programs that can not be duplicated. Such a quantum
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copy-protection scheme would consist of:

1. A poly(n) sized quantum circuit V , which takes df (a classical description of f) as input and
outputs a mixed state,ρf

2. A poly(n) sized quantum circuit, C, which takes ρf and x as input and attempts to output
f(x). For correctness, it outputs f(x) with high probability.

A software developer can use V to make multiple copies of ρf and sell them along with their soft-
ware. The software would then require the user to evaluate f(x) with C. To prevent pirating, we
would require that it is computationally inefficient to make additional states that can be used to
calculate f(x), and to learn f from its input-output behavior.

3 Early Constructions

In this section, we will discuss some of the first major accomplishments in quantum money research.
First, we will describe Wiesner’s original proposal. Next, we will discuss some of Scott Aaronson’s
early contributions to the field, which included defining some concepts that have been at the core
of current research activities.

3.1 Wiesner’s Quantum Money Construction

The first quantum money construction was proposed by Wiesner is based on conjugate coding
[Wie83]. Conjugate coding takes advantage of the fact that making a quantum measurement on a
qubit will collapse the value of the qubit to the value measured. This means that measuring in the
wrong basis can effectively destroy any information previously stored within the qubit.

The scheme uses n qubits per banknote. Creating a banknote is as follows:

1. Randomly sample bitstrings M = {0, 1}n and N = {0, 1}n. Let Mi and Ni be the ith bit of
the respective string

2. For the ith qubit in the banknote, encode Ni it in the standard basis if Mi = 0 and encode
Ni in the |+〉, |−〉 basis if Mi = 1

3. Stamp a serial number, S, on the banknote and store the tuple (S, M , N) in a secure location

To verify whether a banknote is valid, the bank would look up S to get M and N , measure each
qubit in the basis described by M and accept if it measures the string N . A later revision of this
scheme suggested to use a random function generator, g, and a secret key k, to automatically map
S to M and N , (gk(S) = MN)[BZBW15]. This would allow the bank to store the single secret key
k instead of a tuple for every banknote.

A brute force attempt to counterfeit one of these banknotes would require the attacker to measure
each qubit in the correct basis, then prepare a second banknote with the same encodings. However,
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the attacker doesn’t know M , so for each qubit, they have a 50% chance of choosing the wrong
basis. Furthermore, for each basis they choose incorrectly, the bank has a 50% chance of measuring
the wrong bit. Therefore, the probability of a successful brute force attack is (3

4)n. However, this
scheme is not query-secure, meaning that if the bank doesn’t confiscate the banknote after every
verification, then it can be broken. One such attack is detailed in [NSBU16]. The procedure and
analysis of this attack can be found in Appendix C.

3.2 Aaronson’s Formal Definition of Quantum Money

The first formal definition of quantum money was proposed by Aarsonson[Aar09]:

A quantum money scheme with key size n consists of:

1. A poly(n) sized quantum circuit B with classical string, s as input and output a classical
string es and mixed state ρs as output.

2. A poly(n) sized quantum circuit A which takes a string e and state ρ as input and either
accepts or rejects

A quantum money scheme is what Aaronson calls ”private-key” if an adversarial quantum circuit,
C, given ρ⊗ks can not produce more than k states that can be accepted by A with high probability.
It is considered ”public-key” if C also received es as input.

The circuit B can be considered as the bank in this case, with s being a secret key, es being the
public key and ρs being the banknote. Circuit A can be considered as the authenticator which would
be publicly available to everyone. The completeness error, ε, is the probability that A accepts given
a valid pair produced by B. Aaronson also formally defines a soundness error, δ, which essentially
measures the maximum probability of a counterfeiter succeeding.

The soundness error, δ, is defined as the following: For all counterfeiter circuits, C with input ρ⊗ks
and outputs state σs on k+r registers, where σi represents the ith register,

∑
i P (A(es, σ

i
s) accepts) ≤

k + δ. Intuitively, δ measures the maximum probability of a counterfeiter succeeding.

3.3 Aaronson’s First Public-Key Quantum Money Construction

The general idea of public-key quantum money is to create banknotes that can be authenticated
with a publicly known algorithm which can’t be counterfeited by adversaries. The first public-key
quantum money scheme was proposed by Aaronson[Aar09]. While this scheme has already been
broken, it does a good job of illustrating the concept of public-key quantum mondecoheredey.

A stabilizer state is a pure state that can be obtained by applying CNOT, H and π
4 -phase gates to

|0〉n. To generate a banknote,

1. Prepare l stabilizer states |C1〉...|Cl〉

2. For each state, produce m stabilizer measurements, Ei1...Eim.

3. With probability ε, Eij is generated such that |Ci〉 is a +1 eigenstate of Eij such that Eij |C〉 =
|C〉. Otherwise, produce Eij as a tensor produce of n random Pauli operators with a random
phase: Eij = (−1)bP1 ⊗ ...⊗ Pn.
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Each banknote will consist of the stabilizer states, the measurements, and a signature of a classical
description of the measurements. To authenticate a banknote, randomly perform a measurement
for each state and accept if the majority of measurements return +1. With probability 1 − ε, Eij
was produced randomly so there’s a 50% chance of returning +1. With probability ε, |Ci〉 is a +1
eigenstate of Eij so it always returns +1. Therefore, the probability of a measurement returning
+1 is 1

2 + ε
2 .

This scheme is predicated on the conjecture that it is hard to produce additional states |C〉 that
have a non-negligible probability of returning +1. Unfortunately, this quantum money scheme has
already been broken[LAF+09].

3.4 A Construction Relative to a Quantum Oracle

While Aaronson’s first construction was broken, he did provide promising evidence of the possibility
of a public-key quantum money scheme by proving that such a scheme exists relative to a quantum
oracle. A quantum oracle is a logical construct that can evaluate a quantum circuit in O(1) time.
For example, if U were a quantum oracle, then U(|x〉|0〉) = |x〉|f(x)〉. Essentially, the theorem
states that given the defined quantum oracle, it is possible to implement a publicly-key money
scheme.

The oracle used in the proof, U is defined as follows:

U maps the state |0〉|s〉 to |0〉|s〉|es〉|ψs〉, where s ∈ {0, 1}n is a secret key, es ∈ {0, 1}3n is a public
key and |ψs〉 is a n-qubit pure state. Both are uniformly randomly chosen, but fixed given input s.
This allows the bank to use U to produce banknotes, |ψs〉 and serial numbers es.

U also maps |1〉|es〉|ψs〉 to |1〉|es〉|ψs〉|1〉 and |1〉|es〉|φ〉 to |1〉|e〉|φ〉|0〉 for any |φ〉 orthogonal to |ψs〉
or if e 6= es This allows users to validate banknotes by inputting |1〉|es〉|ψs〉 and measuring the last
qubit of the output.

This proof is predicated on what Aaronson calls the ”Complexity-Theoretic No-Cloning Theorem”.
It is used to show that in order to counterfeit a banknote or copy-protection state, the attacker
would need to make an exponential number of queries to the quantum oracle. Therefore, it can not
be efficiently accomplished.

4 Current Research Areas

Currently, the central research goal of quantum money is to provide a construction of public-key
quantum money, as laid out by Aaronson, along with a security proof. Unfortunately, this has yet
to be achieved. In this section, we detail how certain problems and mathematical concepts are
used to construct modern public-key quantum money schemes. While each scheme is predicated
on the hardness assumption of a problem, the same can be said for classical public-key encryption
schemes. For example, the Decisional Diffie-Hellman Assumption has no proof but is still widely
used in many classical encryption schemes. Therefore, the lack of a security proof for the following
schemes should not affect their credibility.

In this section, we will discuss two significant proposals for public-key quantum money. First, we
will discuss Zhandry’s recent proposal of his quantum lightning scheme. Next, we will provide an
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overview of work done by Shor et al on public-key quantum money based on problems in knot
theory. Finally, we will give a brief overview of an upcoming paper by Shor on quantum-money
from lattices, based on publicly available lectures that he has given about this project. This
is by no means an exhaustive selection of current research in quantum money. Another notable
accomplishment not investigated here was Daniel Kane’s quantum money scheme based on modular
forms [Kan18].

4.1 Quantum Lightning

4.1.1 What is Quantum Lightning?

The idea of using quantum lightning to construct public-key money was proposed by Zhandry in
2019. Quantum lightning is the concept of generating random states, analogous to the randomness
of where real lightning strikes. Furthermore, each state generated would have a serial number, such
that an adversary trying to counterfeit a banknote would be practically unable to prepare a second
state with the same serial number.

A quantum lightning scheme consists of a setup procedure, SetupQL, which takes a security pa-
rameter, λ, as input and samples 2 poly-time quantum algorithms: a STORM algorithm and a
V ER algorithm.

STORM takes a security parameter, λ, input and samples a quantum state called a bolt: |E〉

V ER takes a quantum states, |E〉 as input and either accepts or rejects. If it accepts, then it also
outputs a serial number, s, corresponding to that bolt.

To ensure correctness, V ER must accept every bolt generated by STORM , and must consistently
output the same serial number when run on the same |E〉 multiple times.
To ensure security, an adversary should not be able to counterfeit a bolt. In more formal terms, given
the STORM and V ER algorithms, an adversary should not be able to produce two, potentially
entangled, bolts, |E0〉, |E1〉, such that V ER outputs the same serial number for both with non-
negligible probability.

4.1.2 Public-Key Signature Scheme

Given a secure and correct quantum lightning scheme, it may seem intuitive that a public-key money
scheme follows: use the bolts as banknotes and V ER as the authentication algorithm. However,
V ER accepts all bolts generated by STORM , so an adversary could produce a counterfeit banknote
by simply running STORM .

To rectify this, we need a public-key signature scheme secure against quantum chosen-message
attacks. In [AC12], Aaronson describes one such scheme relative to an oracle. The signature
scheme consists of the functions: KeyGen, Sign, and Auth. KeyGen takes random bits as input
and outputs a public-private key pair. Sign takes a key and bitstring as inputs, and outputs a
signature of that bitstring. Auth takes a key, bitstring and signature as input, and either accepts
or rejects. For correctness, any signature signed with one key can be authenticated with its paired
key.
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Figure 1: A knot diagram (left) and an oriented link diagram (right)

4.1.3 Public-Key Quantum Money Construction

The public-key money scheme is as follows:
Create a public-private key pair with KeyGen, kpriv and kpub, for the bank.

To create a banknote, run STORM to obtain |E〉 and run V ER to obtain s. Then, run σ =
Sign(kpriv, s). The quantum money state is |E〉 and its serial number is (s, σ)

To verify a banknote, accept if both Auth(kpub, σ, s) accepts and V ER(|E〉) = s.

Intuitively, this is secure since in order to counterfeit a banknote, an adversary would either have
to forge the bank’s signature on a random bolt that it generated, or generate a second bolt with
the same serial number, which would break the security of the quantum lightning scheme.

4.1.4 Construction Of Quantum Lightning

While quantum lightning seems promising, its construction, proposed by Zhandry, is quite compli-
cated. This report will detail the basic mathematical concepts that Zhandry uses.

Consider a collision resistant hash function, H, on a superposition on all possible inputs, |supx〉:
H(|supx〉|0〉) = |supx〉|supy〉. By measuring |supy〉, we can obtain |y〉 and a superposition over all
the inputs, |ψy〉, corresponding to |y〉. We can interpret y as the serial number and |ψy〉 as the
quantum state. To verify, apply H to the quantum state and output the measurement. However, an
adversary can easily forge two bolts with the same serial number, y, by outputting 2 identical input
states, |x〉. To prevent this, Zhandry uses a class of hash functions called ”non-collapse-binding”
hash functions, which allows for a mechanism to distinguish between states |x〉 and |ψy〉.

4.2 Quantum Money From Knots

We will now provide an overview of the public-key quantum money scheme proposed by Peter
Shor et al in 2012, based on presumably intractable computational problems arising in knot theory
[FGH+12a]. The concepts used in Shor’s construction bear some similarities to those used in
quantum lightning.
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4.2.1 Knots, Links, Diagrams and Polynomials

To avoid having to use too many concepts from topology, we can simply think of a knot as an
embedding of a closed loop in three dimensional space. We will now define some of the terminology
we will need for the quantum money scheme. Our definitions will be minimal, but for more
information, the reader should consult [Ada94]. A knot diagram is obtained by projecting a knot
into two dimensions, and by distinguishing, at those points where the knot crosses over itself, the
near and far parts of the knot. A link is made from two or more knots which are intertwined. An
oriented link is a link in which each component is associated with one of the two possible directions
along its loop. Such links can also be visualized using diagrams, as in Figure 1.

Two links are equivalent if they can be deformed from one into another without having to cut
them. If two links are equivalent, the diagram of one can be transformed exactly into the diagram
of the other using a sequence of Reidemeister moves. A Reidemeister move is one of three types of
simple, local manipulations on a link diagram (again, see [Ada94]) for a description of the moves.
An invariant is a function of links (or knots) which has equivalent values for equivalent links. To
show that a function is a knot invariant, you simply need to show that it is preserved under the
Reidemeister moves. Polynomials of links (or knots) are a powerful class of invariants, analogous
to characteristic polynomials in linear algebra.

One of the most well-known knot polynomials is the Alexander polynomial. We denote the Alexan-
der polynomial in a variable x of a link diagram L by ∆L(x). A simple algorithm to compute
the Alexander polynomial of a particular link diagram is provided in Appendix A. The usefulness
of this polynomial in this scheme, as we will see, is that equivalent knots always have the same
Alexander polynomial. However, note that the converse is not true; if two knots have the same
Alexander polynomial, they are not necessarily equivalent.

Note further that the algorithm for computing the Alexander polynomial of a knot can be converted
into a polynomial-time quantum algorithm which can operate on superpositions of links and results
in superpositions of polynomials.

The scheme in [FGH+12a] uses a particular encoding of link diagrams which we should discuss. A
planar grid diagram of a link is a d × d grid in which we inscribe d X’s and d O’s. The diagram
must have exactly one X and one O in each cell, and only one (or zero) symbols per cell. In each
row, we make a horizontal arrow from the O to the X (either pointing left or right) and in each
column a vertical arrow from the X to the O (up or down). Vertical arrows always ”pass over”
horizontal arrows. An illustration of a planar grid diagram is shown in Figure 2.

We omit the result here, but it is a theorem that every oriented link can be represented by a planar
grid diagram, and conversely every grid diagram determines an oriented link. We can consequently
derive a set of grid moves on planar grid diagrams which allow us to define the equivalence class
of grid diagrams representing a particular oriented link (and thus its equivalent links).

A grid diagram is completely determined by two permutations σX , σO from the symmetric group
Sd, where the X’s and O’s are found in the cells (i, σX(i)) and (i, σO(i). Of course, d must be
at least 2, and we require the permutations be disjoint, in the sense that for any i, we have
σX(i) 6= σO(i)). Conversely, any two disjoint permutations on d elements specifies a d-dimensional
planar grid diagram. The number of disjoint pairs of permutations on d elements is (d!) ·(!d), where
!d, called the subfactorial of d, is the number of permutations on d elements without fixed points.
The subfactorial of d is the nearest integer value to the quotient d!

e , where e is euler’s constant.
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Figure 2: A basic grid diagram corresponding to an oriented link of two (trivial) knots.

4.2.2 Minting Knot-Money

We will now describe the proposed procedure to generate pieces of quantum money.

Fix an integer security parameter D. Define a Hilbert space whose basis vectors represent (pre-
sumably via a binary encoding) planar grid diagrams |G〉 = |σX〉 ⊗ |σO〉, where each grid diagram
G is determined by a pair of disjoint permutations σX and σO. The dimensionality of each G,
denoted d(G), is the size of of the permutations which determine G. Assume the largest possible
grid diagrams in the space are of dimensionality D. Recall that each G determines an oriented link.

In [FGH+12b], the authors specify a probability distribution which will act as a weight on a
superposition of grid diagrams. The specifics of the distribution are important for the security of
the protocol, but we will omit these details for now, and refer to this distribution as ρ(G), where
G is a grid diagram. The definition of ρ also takes into account the security parameter D, which
should be large. Following a procedure built on previous results in [GR02] for generating quantum
states from certain classes of probability distributions, we can construct the initial state

|init〉 =
1√
N

∑
G

ρ(G)|G〉

(At some point until now, we need to check that each σX and σO are in fact disjoint, which can
be checked efficiently. They are disjoint with probability approximately 1

e , so repeat the procedure
until they are). Here, N is an appropriate normalizing constant. Intuitively, |init〉 is a weighted
superposition of all possible grid diagrams G (within our dimensionality bounds).

It is now possible to take the superposition of all grid diagrams given in |init〉 and compute into an
ancilla register a superposition of Alexander polynomials, following the algorithm described above.
Suppose we measure this ancilla register and read the encoding of the coefficients of the Alexander
polynomial as the number p. By measuring, we collapse the entire system into the quantum state

|$p〉 =
1√
N

∑
G | ∆G=p

ρ(G)|G〉

where ∆G is the sequence of coefficients of the Alexander polynomial of the grid diagram G. Again,
we assume an appropriate N to normalize the state. In other words, |$p〉 is a weighted superposition
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of grid diagrams G with the same Alexander polynomial determined by p. The quantum money
produced by the mint is thus the pair (|$p〉, p). The “public key” in this scheme is the serial number
p, which we assume is published by the mint. This is analogous to the use of a hash function in
quantum lightning, where p is the output of the hash function and |$p〉 is the superposition of
inputs.

4.2.3 Verifying Knot-Money

There is an efficient algorithm to verify that a pair (|ψ〉, p) is a genuine piece of quantum money
without damaging the state. The verification algorithm basically proceeds as follows.

1. First, verify that |ψ〉 is actually a superposition of encodings of valid grid diagrams. This is
simple enough to do efficiently. If it is verified, proceed, otherwise the money is obviously not
genuine.

2. Compute and measure the (quantum) Alexander polynomial of |ψ〉. If pair is a genuine piece
of quantum money, the measurement will yield p, since every grid diagram in the superposition
will have the same Alexander polynomial. If the result is p, proceed, otherwise, reject.

3. The final component of the verification algorithm is a Markov Chain which verifies that |ψ〉
is the correctly weighted superposition of grid diagrams, with respect to the minting process.
We refer to the original work [FGH+12b] for the details of the Markov Chain. In brief,
the procedure iteratively verifies that the superposition of grid diagrams is stable under the
actions of valid grid moves. A short, but slightly more detailed summary of its behaviour is
provided in Appendix B.

4.2.4 Security of Knot Money

It is conjectured (but not certain) that it is very difficult to forge money which can pass the above
verification procedure. In particular, it is presumed to be very difficult to forge money which will
satisfy the third step. Suppose we want to fool the verifier into accepting a state as genuine. We can
assume we know a number p which corresponds to a genuine piece of quantum money, because in a
public-key scheme these numbers are presumed to be published by the mint. We can even assume
we know a link diagram G whose Alexander polynomial is p. To reliably fool the verifier, we would
need now need generate a superposition of all grid diagrams G′ equivalent to G′ (or sufficiently
many given arbitrarily large D). This is assumed to be a very, very difficult problem for diagrams of
even mediocre complexity. The knot recognition problem, of checking whether two diagrams G and
G′ represent the same link, is not even known to be in NP. Furthermore, even if we are provided
with an oracle which tells us whether two diagrams G and G′ are equivalent, it is not known
how to construct a sequence of moves which transform G to G′, which would be required to fool
step 3 of the verification procedure. Since its publication, this scheme has not demonstrated any
feasible security vulnerabilities. If the reader is able to fool the verification procedure, they should
immediately notify the nearest available topologist, because this would imply the most remarkable
breakthrough in knot theory in at least the last half century.
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4.3 Quantum Money From Lattices

In this section, we will discuss the ideas behind Peter Shor’s current work on quantum money from
lattices. At the time of writing (December of 2020), this work is not yet published, so we cannot
provide many details of the scheme, nor can we make a firm judgement on its security. However,
in the last few months Shor has given several lectures on this project which are publicly available.
Thus, in this section, we will be summarizing the contents from these talks, which the reader can
find at [Sho20a] [Sho20c] [Sho20b]. Of course, these notes can only be a high-level approximation
to Shor’s work, but we believe we have summarized the concepts behind it. Any misinterpretations
of his lectures are our own fault. We hope that this high-level summary will provide the reader
with background and intuition so that they will be better able to assess Shor’s work when it is
published.

Preliminaries

In this context, lattice means a discrete subspace of the vector space Rn. Given a set of basis
vectors B ⊂ Rn, we can define the lattice generated by B, denoted L(B), as the set of all possible
integer linear combinations of the basis vectors. Formally,

L(B) =

{
n∑
i=1

αibi | αi ∈ Z, bi ∈ B

}

Given a lattice L, define the dual lattice L⊥ as the set of vectors which are orthogonal to each of
the lattice vectors in L.

One of the lattice problems which has been most closely studied by the cryptographic community
is the Closest Vector Problem (CVP). Given a basis B and a vector v, find a point on the lattice
which is closest to v with respect to some norm. The particular case of the CVP where v = 0 is
called the Shortest Vector Problem (SVP).

A slight generalization of the CVP is called the Bounded Distance Decoding problem (BDD). Given
a vector x which is close to a lattice point v, the goal is to find v. This problem has a polynomial-
time algorithm. Here, “close” is defined as within αλ1, where α is a scalar and λ1 is the length of
the shortest vector in the lattice.

Given a ball B around a point x, lattice points v in B can be sampled with probability proportional
to a Gaussian distribution. If the standard deviation of that distribution is exponentially larger
than the shortest basis for the lattice, one can use a quantum computer to create a superposition
of lattice points in B in polynomial time. This superposition has the form

1

N

∑
v∈L

exp
(−(v− x)2

4σ2

)
|v〉

where N is a normalizing constant.

Eldar and Shor [ES16] have constructed a Quantum Fourier Transform operating on lattice vectors.
More specifically, they operate on vectors in a subclass of lattices based on hypercubes, but this
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is not relevant for our discussion. The function takes a Gaussian superposition of vectors around
the origin of a lattice, and outputs a Gaussian superposition of vectors around each of the points
in the dual lattice. The magnitude of the input Gaussian superposition is inversely proportional to
Gaussian superposition around each of the points in the dual lattice. For instance, if one imagines
the original superposition as a large ball around the origin, the output will be a very small ball
around each of the lattice points in the dual lattice.

Creating Lattice Money

The money itself will be a Gaussian superposition of lattice vectors, forming a small ball around a
dual lattice vector w.

First, create a large Gaussian superposition around the origin L. Perform the quantum analog
of the BDD algorithm, and the resulting measurement will yield a small Gaussian superposition
around a vector w in L⊥.

Shor argues that this quantum money is unable be forged, as follows. If we suppose there is a
procedure to copy such a money state, we would effectively be left with two Gaussian distributions
around the same lattice vector w. Sampling from each of these two distributions yield two lattice
vectors both close to w. Their difference, also a lattice vector, should be close to 0 (since the
Gaussian distribution is small), so this hypothetical procedure would effectively solve SVP.

In reality, this scheme just described is the “naive” version of quantum lattice money. Shor has
pointed out that there doesn’t seem to be a way to distinguish between a state representing a
single lattice vector near w and a Gaussian superposition of such vectors. Hence, a counterfeiting
agent could measure simply measure one lattice vector from a Gaussian superposition and forge
that state. As a solution, Shor proposes using two copies of the Gaussian superposition around
the same vector w instead of one in each piece of quantum lattice money, although the details for
this argument are not yet available. Again, the presumed difficulty of counterfeiting this kind of
lattice money relies on the difficulty of SVP using randomly sampled vectors from each copy. Shor
qualifies that while a blind, brute-force style attack isn’t feasible, they have yet to rigorously argue
that no clever attack strategies exist.

5 Conclusion

This report has detailed the evolution of the concept of quantum money from its inception to
modern day research. While promising evidence has been presented by Aaronson of the existence
of a secure public-key quantum money scheme, the actual construction of such a scheme remains
an open problem. The attacks breaking Wiesner’s and Aaronson’s early schemes illustrate the
difficulty of this problem. The current central research question of quantum money is to develop
a security proof for a public-key quantum money scheme. Currently, all proposed schemes are
based on problems assumed to be hard. However, the same can be said for classical public-key
cryptography as well, so the lack of a security proof does not discount a scheme’s credibility.
Furthermore, motivation of the research in this area extends past practical applications, as it also
yields insight into the limits of quantum information processing.
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Appendix

A
Computing the Alexander Polynomial

Take any oriented link diagram with α crossings, and observe that it divides the plane into α + 2
regions. This can be derived from Euler’s characteristic formula V − E + F = 2. Let us denote
these regions as r1, r2, ..rα+2.

A diagram L will determine a matrix M of size α× (α+ 2), as follows. Due to the orientations of
the links, each of the α crossings will be in one of two forms, which we can call a left-hand crossing
or a right-hand crossing, depicted in Figure 3. At each crossing, associate the four regions divided
by that crossing with the variables A,B,C and D according to the ordering depicted in Figure 3,
and record the equation

xA− xB + C −D = 0

with the variables A,B,C,D each replaced with the associated ri. This system of equations can
be represented in matrix form by

M


r1

r2

· · ·
rα+2

 = 0

where M is an α× α+ 2 integer matrix, and we will have Mij ∈ {0, ±1, ±x, (±1± x)}. Turn M
into a square matrix M∗ of dimension α by deleting two columns corresponding to any two regions
which are adjacent in the original link diagram. Now, det(M∗) will be some polynomial in x. The
Alexander polynomial ∆L(x) is obtained by dividing det(M∗) by a factor ±xk such that the term
of lowest degree is a positive constant.

B D

DC

A

CB

A

Figure 3: Pattern for labelling regions
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B
Verifying Knot Money (Addendum)

1. Define a unitary operator U acting on a grid state |G〉 and an ancilla register as

U(G⊗ |0〉) = |G〉 1√
ρ(G)

ρ(G)∑
i=1

|i〉

Take the claimed money state |ψ〉 and produce the state

|ψ′〉 = U(|ψ〉|0〉)

=
1√
N

∑
G | ∆(G)=p

ρ(G)∑
i=1

|G〉 ⊗ |i〉

2. Let S be the set of possible grid diagram moves, for grids of dimensionality at most D. For
each s ∈ S, write a permutation matrix Ps encoding the behaviour under s of all grid diagrams
of dimension at most D. Since permutation matrices are always unitary, we can generate a
unitary operator

V =
∑
s∈S

Ps ⊗ |s〉〈s|

The crux of the verification process is the fact that equivalent grid diagrams are preserved
under the grid moves. Take the state ψ′ and generate the state

|ψ′′〉 = |ψ′〉 ⊗
∑
s∈S

1

|
√
s|
|s〉

The action of |Ψ〉 under V is shown to be

V |Ψ〉 =
∑
s∈S

1√
|S|
(
Ps|ψ′〉

)
⊗ |s〉

=
∑
s∈S

1√
|S|
|ψ′〉 ⊗ |s〉 (By invariance under grid moves)

Now, measure the projector

P = I ⊗ I ⊗
( ∑
s,s′∈S

1

S
|s〉〈s′|

)
If |Ψ〉 is a component of genuine money, the measurement will be +1 with certainty, the state
|ψ′′〉 is invariant under every s ∈ S.

3. Repeat step (b) some r = poly(D) times. If we always get a +1 eigenvector from the projector
P, we can accept the money.
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C
Additional Detail on an Attack on Weisner’s Quantum Money

To create a counterfeit banknote, for each qubit in a banknote, do the following:

1. Start with a probe qubit |0〉

2. Rotate it by ε, then apply a CNOT gate to the ith qubit of the banknote with the probe qubit
as the control bit. Have it verified by the bank.

3. Repeat step 2 π
2ε times for the ith qubit.

4. Measure the probe qubit in the standard basis. If it’s |0〉, then the banknote qubit is in the
standard basis. If it’s a |1〉, then the banknote qubit is in the |+〉, |−〉 basis

5. Measure the banknot qubit with the correct basis. We now know Mi and Ni

If the ith banknote qubit is in the standard basis, then the chance of failing a verification is
proportional to ε2. If the ith banknote qubit is in the |+〉, |−〉 basis, then there is no chance of
failing the verification.

We will refer the probe qubit |0〉 rotated counter-clockwise by ε degrees as |ε〉 = cos(ε)|0〉+sin(ε)|1〉.
There are 4 possible states that a banknote qubit, |B〉, can be in.

1. Case 1: |B〉 = |+〉. Applying a CNOT gate with |ε〉 as the control qubit does nothing, since
the NOT of |+〉 is itself. Therefore, verification will always succeed and after each iteration,
the probe qubit will be rotated by ε until it reaches |1〉.

2. Case 2:|B〉 = |−〉. Applying a NOT gate to |−〉 gives −|−〉, so the outcome of a CNOT on
(cos(ε)|0〉+ sin(ε)|1〉)|−〉 would be (cos(ε)|0〉− sin(ε)|1〉)|−〉, which is equivalent to | − ε〉|−〉.
So a verification will always succeed, but the probe qubit will be rotated clockwise after each
iteration until it reaches | − 1〉.

3. Case 3:|B〉 = |0〉. Applying the CNOT would give us: (cos(ε)|00〉 + sin(ε)|11〉). When
verifying this qubit, there is a sin2(ε) ≈ ε2 chance of failing. However, if it doesn’t fail, then
the probe qubit will remain at |0〉 for all iterations.

4. Case 4: |B〉 = |1〉. Applying the CNOT would give us: (cos(ε)|01〉+sin(ε)|10〉). The analysis
is the same as Case 3. The probe qubit will remain at |0〉 if the verification succeeds.

By measuring the probe qubit at the end of π
2ε iterations, we can deduce whether the banknote

qubit was in the standard basis or the |+〉, |−〉 basis.
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