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ABSTRACT

We set to study overparmetrization in the quantum alternating operator ansatz
(QAOA) as exhibited in Wiersema et al. (2020) and Kiani et al. (2020). We tackle
these problems from two fronts, one from a quantum optimal control theory ap-
proach and one from a classical deep learning approach. In particular, we try to
apply results from optimal control theory to determine the optimization landscape
of learning unitaries and we try to adapt the results concerning overparametriza-
tion in classical deep learning theory.

1 INTRODUCTION AND PRELIMINARIES

The quantum alternating operator ansatz (QAOA) has found many applications to various problems
including some recent work that has involved using QAOA (or some variant of it) as a means to
generate unitaries or approximate the ground state energy of a Hamiltonian (Wiersema et al., 2020;
Kiani et al., 2020). The QAOA was introduced as an extension of the quantum approximate opti-
mization algorithm, which is also abbreviated as QAOA1 (Hadfield et al., 2019).

In the paper of Kiani et al. (2020), they set out to determine the convergence of gradient descent to
a d-dimensional target unitary using an alternating ansatz of the form

e−iAtKe−iBτK · · · e−iAt1e−iBτ1

where A,B are sampled from a Gaussian Unitary Ensemble (GUE). Using the Frobenius norm as
their loss, their results showed that gradient descent typically converges once the the number of
parameters is at least d2. Interestingly enough, this dependence on the number of parameters did not
depend on whether or not the target unitary was Haar random or of the form

e−iAtN e−iBτN · · · e−iAt1e−iBτ1

where 2N << d2. Therefore, the problem requires at least d2 parameters in order for gradient
descent to learn.

In Wiersema et al. (2020), a similar behavior was observed. Their paper was focused on the problem
of approximating the ground state energy of a Hamiltonian H and while they do not use the QAOA,
they use the Hamiltonian Variational Ansatz (HVA) which takes on a similar alternating form. They
observed the following from experiments on the Transverse-Field Ising Model and the XXZ-model:

• The overparametrized regime is at most poly(N) where N is the system size
• If the parameters are randomly initialized, in the underparametrized regime, while it is still

possible to converge to a global minimum, it also might not
• If the parameters are randomly initialized, in the overparametrized regime, it will always

converge to a global minimum.

* Equal Contribution
1For this report, QAOA will refer to the quantum alternation operator ansatz
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We would like to demystify the dependence that the optimization process has on the number of
parameters.

As the problem of generating unitaries has previously been analyzed from a quantum optimal control
setting (Ho et al., 2009), from one front, we set out to determine whether we can apply quantum
optimal control techniques to mathematically justify the d2 threshold exhibited in Kiani et al. (2020).
Furthermore, as Kiani et al. (2020) uses the QAOA, we will take a deeper look into the optimality
of QAOA in the different context of approximating ground state energy. Section 2 will introduce
quantum optimal control, sufficient conditions that guarantee a trap-free optimization landscape, and
the optimality of the QAOA and how some results from classical optimal control theory can carry
over. Lastly, by running numerical experiments, we will investigate whether or not we can simplify
the problem of generating unitaries by considering only traceless A,B.

From the other side, section 3 will focus on casting this problem into the context of deep learning
theory. Seeking to minimize the l2 norm between our learned unitary and the target unitary, our
problem has many similarities with training deep linear neural networks–a longstanding field where
convergence is well-studied. By using Lie theory and the exponential map to view our problem
from the perspective of the Lie algebra u(n), we attempt to make the desired relation for A and B
restricted to particular commutation relations. Finally, also motivated by deep learning theory we
study the effect on convergence rate by instead using natural gradient descent.

2 QUANTUM OPTIMAL CONTROL THEORY

There has been extensive work done in the field quantum optimal control theory to study the ex-
istence of local traps in the optimization landscape (Russell et al., 2017; Riviello et al., 2017; Ho
et al., 2009). We will dedicate this section to explaining how the problem of learning unitaries with
alternating unitaries can be rephrased as a quantum optimal control problem and introduce some of
the existing theorems in quantum optimal control theory.

2.1 INTRODUCTION TO QUANTUM OPTIMAL CONTROL

We will begin by introducing the general set up of a quantum optimal control problem. LetH denote
a Hilbert space of dimension N < ∞. While it is possible to consider the case where H is infinite
dimensional, for a number of problems of interest (including our problem of learning unitaries), it
suffices to only work with a finite dimensional Hilbert space (De Fouquieres & Schirmer, 2013). The
evolution of this quantum system will be dictated by a unitary operator Uf (t) ∈ U(N) satisfying
the Schrodinger equation

U̇f (t) = −iHf (t)Uf (t), Uf (0) = I (1)

whereHf is the Hamiltonian of the system that will depend on a control f . Typically, these functions
f will be taken from L2[0, T ], the space of square integrable functions on the interval [0, T ] where
T > 0 (Ho et al., 2009; De Fouquieres & Schirmer, 2013). Another simplification that is made is
that the Hamiltonian Hf (t) will only depend on the control functions in the following manner:

Hf (t) = H0 +

m∑
i=1

fi(t)Hi (2)

where H0 is called the drift of the system and {Hi}mi=1 are the control Hamiltonians (De Fouquieres
& Schirmer, 2013; Morales et al., 2020). We will make the same simplification for the remainder of
this report. The objective of a quantum optimal control problem is to minimize

min
f∈L2[0,T ]

J(VT (f)) (3)

where J : G → R is your cost or your fidelity function and VT : L2[0, T ] → G is the map
f 7→ Uf (T ). G is typically U(N) or SU(N) depending on the properties of the time evolution
Uf (T ).

2



MAT1752 - Written Report

2.1.1 EXAMPLE: GENERATING UNITARY TRANSFORMATIONS

Suppose you are given a target unitaryW . The problem of generating unitary transformations can
be phrased as the following optimal control problem:

min
f∈L2[0,T ]

||W − VT (f)||2F

where || · ||F denotes the Frobenius norm. For a more detailed analysis of this problem, (Ho et al.,
2009) identify the critical points and analyze the Hessian at those critical points for this problem.

2.2 OPTIMIZATION LANDSCAPES

In practise, finding a closed-form solution is difficult or impossible so quantum control problems
are typically solved by resorting to classical optimization methods such as gradient descent or the
downhill simplex method (Moore et al., 2008). Furthermore, oftentimes the space of control func-
tions will need to be constrained to a subspace, which we will denote as F , that is easier to work
with (e.g. piecewise constant functions). For this reason, the question of interest is under which
conditions can we ensure that the constrained optimization landscape does not contain any traps.

Definition 2.1. (Traps) A trap for a given quantum optimal control problem

min
f∈L2[0,T ]

J(VT (f))

is a control function f ∈ L2[0, T ] such that f is a local optima of J(VT (f)) but not global.

Notice that saddle points are not considered to be traps. The reasoning for this is that the optimization
process is rarely attracted to saddle points and this behaviour does not increase with the number of
saddle points (Riviello et al., 2017). We will now go over three conditions that when in conjunction,
will ensure that the optimization landscape does not contain any local traps (Riviello et al., 2015;
2014).

2.2.1 CONTROLLABILITY

The first of the three conditions is that the global optima is reachable for some time 0 ≤ T < ∞.
For example, in the generating unitary transformations problem, if we are given a target unitaryW ,
controllability is the condition that there exists T <∞ such that for any ε > 0

min
f∈L2[0,T ]

||W − VT (f)|| < ε

The controllability of quantum control problems has been studied extensively where the techniques
typically depend on results in Lie theory (Morales et al., 2020; Altafini, 2002; Wu et al., 2011).
Moreover, controllability is likely to be a necessary condition for the optimization landscape to not
contain local traps. In particular, Wu et al. (2011) constructed an example of the gate synthesis
control problem without the controllability assumption where there will be a guaranteed local sub-
optima in the optimization landscape. Depending on the quantum control problem, there are many
mathematical definitions of controllability (Albertini & D’Alessandro, 2001). We will only cover
one that is most relevant to us called operator-controllability.

Definition 2.2. (Reachable Set) Given a quantum system, a drift Hamiltonian H0, and a collection
of control Hamiltonians {Hi}mi=1, the reachable set at time T > 0 is defined as

R(T ) = {W ∈ G : ∃f ∈ F ,∃Uf (t) solution of (1) and Uf (T ) =W}

The reachable set is then defined to beR = ∪T>0R(T ).

Definition 2.3. (Operator-Controllability) We say the quantum system is operator controllable ifR
contains every desired unitary (or special unitary) operator.
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For other notions of controllability such as pure-state-controllability or density-matrix-
controllability we refer the reader to the paper by Albertini & D’Alessandro (2001). The most
common approach to check for operator-controllability is to verify the Lie rank algebra condition
(Albertini & D’Alessandro, 2001; Morales et al., 2020; De Fouquieres & Schirmer, 2013). The
theorem as presented in (Albertini & D’Alessandro, 2001) is as follows:

Theorem 2.4. The reachable set R attainable from identity for the quantum system described by
(2) is given by the connected Lie subgroup eL corresponding to the Lie algebra L generated by
{iH0, iH1, ..., iHm}.

Proof. See Albertini & D’Alessandro (2001) Theorem 1.

While this is one approach of proving controllability, other approaches have been discovered includ-
ing graph theoretic approaches (Altafini, 2002; Schirmer et al., 2003).

2.2.2 FUNCTIONAL DERIVATIVE OF VT IS FULL RANK

The second condition that is required to hold is that the functional derivative of VT : F → G is of
full rank. To provide some insight as to why this condition is required, by the chain rule, we have
that

δJ

δf(t)
=

〈
∇J(VT ),

δVT
δf(t)

〉
where 〈·, ·〉 denotes the Hilbert-Schmidt inner product. Thus, if we assume δVT

δf(t) is non-singular

δJ

δf(t)
= 0⇔ ∇J(VT ) = 0

If ∇J(VT ) = 0, we call the critical point a kinematic critical point. At a critical point, if δVT

δf(t) is of
full rank, we say the critical point is regular. Otherwise, we say it is singular. While this condition
is necessary for theoretical results (Brif et al., 2010), it was shown experimentally that for other
optimal control problems, regular critical points dominate the optimization landscape and even if
singular local suboptima might exist, they rarely impede the optimization process (Riviello et al.,
2014; Wu et al., 2012).

For the case where G = SU(N), Russell et al. (2017) were able to show that a different condition
is sufficient. Their key theorem is as follows:

Theorem 2.5. (Russell et al., 2017) Consider a parameterized family of time dependent Hamiltoni-
ans H[En, λk] that are traceless and satisfy equation 2. The condition that VT is smooth, globally
surjective, and transverse to the level sets of J is sufficient to replace the full rank condition of VT
for almost all λk (up to a measure zero set of λk).

As remarked in Russell et al. (2017), transversality is generally easier to satisfy than the full rank
condition as transversality only requires that the functional derivative of VT has rank 1 and that∇J
is contained within its range.

2.2.3 ENOUGH CONTROL RESOURCES

The third and final condition is that there are enough control resources for VT to be globally surjec-
tive (Russell et al., 2017). Often times, this condition will be further simplified to just being that the
control field is unconstrained. In practise, this condition is very rarely satisfied due to experimental
limitations. There are a variety of constraints that you can impose that will impact the optimization
landscape. Riviello et al. (2015) ran a number of experiments where they looked at the impacts
of restricting the number of control variables, the control period T , and more. The experiments of
Riviello et al. (2015) (Fig. 3) showed that there is a fairly sharp threshold value for T for which the
optimization fails. Determining this threshold value has been studied for specific problems and is
usually called time optimal control (Schulte-Herbrüggen et al., 2005; Khaneja et al., 2001).
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Definition 2.6. (Infimizing Time) Recall the definition of reachable set at time T , R(T ). Given
W ∈ G, the infimizing time ofW is defined as

t∗(W) = inf{T ≥ 0 :W ∈ R(T )}

For the case whereG = SU(N), Khaneja et al. (2001) developed methods to compute the infimizing
time for a number of control problems by using results from Lie theory and analyzing something
they call the adjoint control system.

From the perspective of QAOA and optimal control theory, another way to restrict our control space
is by restricting the number of jumps (or bangs) that our control functions can have (Yang et al.,
2017; Brady et al., 2020). To the best of our knowledge, determining the optimal number of bangs
that a control function should have has yet to be determined and we shall discuss this further in the
next section.

2.3 OPTIMALITY OF THE QAOA

We will dedicate this section to explaining the motivation behind the QAOA from an optimal control
perspective. While this section will pertain to a different quantum optimal control problem, it will
provides some good analysis and insight into the structure of the QAOA. Suppose we are given two
Hamiltonians A,B and a state |x0〉 that is initially a ground state of A. The objective is to minimize

min
f∈L2[0,T ]

〈xT |B|xT 〉

where |xT 〉 = VT (f)|x0〉 = Uf (T )|x0〉. Furthermore, equation 2 will be of the form

Hf (t) = f(t)A+ (1− f(t))B

where 0 ≤ f ≤ 1. It was first proposed by Yang et al. (2017) that QAOA is optimal by Pontryagin’s
minimum principle. We will now summarize their results and their reasoning as shown in Brady
et al. (2020). Since equation 1 must hold, we can apply a Lagrange multiplier, |λ(t)〉, to impose the
Schrodinger equation constraint. This gives us the function:

φ(f) = 〈xT |B|xT 〉+

∫ T

0

dt〈λ(t)|
(
− d

dt
− iHf (t)

)
Uf (t)|x0〉+ c.c.

where c.c.means the complex conjugate of the previous term. What was shown in Yang et al. (2017)
and Brady et al. (2020) is that a number of necessary conditions will be derived by the Lagrange
multiplier but most importantly, an application of Pontryagin’s minimum principle will give the
necessary condition that

δφ

δf(t)
δf(t) ≥ 0

where we only consider the allowed variations of δf(t). With this necessary condition, we can
determine the behaviour of f(t) by looking at the sign of δφ

δf(t)

• If δφ
δf(t) = 0, then we have no constraint on f(t)

• If δφ
δf(t) < 0, then we know we must have δf(t) < 0 which implies that f(t) = 1.

• If δφ
δf(t) > 0, then we know we must have δf(t) > 0 which implies that f(t) = 0.

Yang et al. (2017) claimed that the case where δφ
δf(t) = 0 is non-generic in the models that they were

considering (SK spin-glass models) so they concluded that the optimal protocol is this bang-bang
protocol (f jumps between 0 and 1) which is the form of the QAOA.

On the other hand, Brady et al. (2020) showed that this may not be the case in general. In particular,
they showed numerically that for an extended period time in the middle of the time interval (a, b) ⊆
[0, T ], you will have that for t ∈ (a, b), δφ

δf(t) = 0. In other words, there are regions where the
optimal control function may not follow this bang-bang behaviour. Instead Brady et al. (2020)
proposed that a better ansatz would be one that is of the form bang-anneal-bang.
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2.3.1 BANG-ANNEAL-BANG PROTOCAL

Brady et al. (2020) proposed that the optimal protocol for the quantum approximate optimization
algorithm would be of the form bang-anneal-bang where the annealing would occur in the period
of time where δφ

δf(t) = 0. They showed mathematically that for the case of a bounded time T ,
the optimal control will always start and end with a bang. What this annealing would look like
is essentially a smooth transition between A,B instead of these sharp jumps. Furthermore, in the
case where the total time T is constrained, QAOA attempts to approximate this annealing section
by exhibiting a sequence of much shorter bangs. They backed up their claims numerically with
experiments done on transverse-field Ising models where the optimal control functions found using
gradient descent did follow this bang-anneal-bang behaviour (see Fig. 1 in Brady et al. (2020)).

2.4 QUANTUM OPTIMAL CONTROL AND LEARNING UNITARIES

We will dedicate this subsection to expressing the problem of learning unitaries by gradient descent
into a quantum optimal control problem. Observe that Kiani et al. (2020) are applying QAOA to
the optimal control problem of generating unitaries. Of note is that the QAOA applied by Kiani
et al. (2020) is not motivated in the same sense as Brady et al. (2020); Yang et al. (2017) as the
former allows the parameters τi, ti to be negative. Due to the dependence on requiring at least d2

parameters, it suggests that at least one of the three conditions mentioned in the previous section is
being violated until we reach this d2 threshold. As mentioned in Kiani et al. (2020), controllability
is already satisfied almost surely. Thus, the only conditions of interest are whether the functional
derivative of VT is of full rank and whether we have sufficient control resources. Since restricting
the number of parameters is a constraint on the space of controls, it is likely the condition that
there are sufficient control resources that is being violated. Specifically, by restricting the number
of parameters, in the context of what was shown in 2.3, we are restricting the number of jumps (or
bangs) that our control functions can have. Furthermore, we are not constraining the total time T as
in the experiments of Brady et al. (2020).

2.4.1 MOTIVATION OF EXPERIMENTS

To verify that the full rank condition (2.2.2) is satisfied, we would like to apply the theorem proven
by (Russell et al., 2017). However, their theorem is dependent on G = SU(N) or that the control
Hamiltonians are traceless. Thus, it will be interesting to see whether the results still hold if we only
consider traceless matrices A,B and whether we can simplify the problem.

2.4.2 NUMERICAL RESULTS

Motivated by the reason above, our numerical experiment aims to answer the following question

• Does a similar dependence on the number of parameters still hold if the control Hamiltoni-
ans are taken to be traceless?

2.4.3 LEARNING WITH TRACELESS HAMILTONIANS

We use the same experimental set up as Kiani et al. (2020) 2 where we add an extreme case of
overparametrization, 10.00d2. We will make matrices A,B traceless by simply considering the
matrices A′ = A − Tr(A)

d I and B′ = B − Tr(B)
d I . We ran 10 experiments on 5 qubit systems (i.e.

d = 32) for each model size with 10,000 steps of vanilla gradient descent and a learning rate of
0.001/α where αd2 is the number of parameters.

As depicted in Figure 1, we get that for the 2d2 and 10d2 cases, gradient descent finds a local critical
point early on in the training process and stays there. In the underparametrized case, we see that
the behavior is similar to that of the non-traceless case. However, while the 2d2, 10d2 cases did find

2We would like to thank the authors of Kiani et al. (2020) for providing us with their code
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Figure 1: Learning a Haar target unitary using QAOA and traceless control Hamiltonians. The loss
axis is logarithmic scale and this is the average loss across all experiments except for the experiment
where the 10.00d2 converged to a zero-loss critical point.

critical points, only one of these points in the twenty experiments were a zero loss critical point.
By considering the extreme case of overparametrization in the 10.00d2, it is likely that this is not
a problem of the overparameterization threshold being higher. We hypothesize that the reasoning
for this is due to the fact that when only considering the randomly sampled traceless matrices, the
problem is no longer controllable. This suggests that simplifying this problem in this manner will
not work.

3 OVERPARAMETRIZATION AND CLASSICAL DEEP LEARNING THEORY

3.1 INTRODUCTION TO NEURAL NETWORKS

We first introduce the preliminaries of the theory of neural networks. The context of the classic
problem is that we are given a set of training data {(x(i),y(i)}mi=1 ⊂ Rdx × Rdy}, and we wish
to train a function which can statistically predict these results. This predictor is taken from the
family of mappings H = {hθ : Rdx × Rdy}, with free parameters θ ∈ Θ. For the purposes of our
investigation, we will focus on linear neural networks. We define the set of linear neural networks
with depth N and widths of hidden layers d1, . . . , dN−1 to be the class of predictors

H = {x→WN · · ·W1x |Wi ∈ Rdi×di−1 , 1 ≤ i ≤ N}

This can be thought of as an N stage process where at each stage the output of the previous is
multiplied by some matrix of dimensions di×di−1, with it’s parameters to be somehow determined.

The free parameters of the predictors are learned through gradient descent (or it’s many variations)
by minimizing the l2 loss between the prediction of the training instances and the labels to which
they correspond:

min
θ∈Θ

L(θ) :=
1

2m

m∑
i=1

||hθ(x(i))− y(i)||2

By gradient descent, we mean to say that we approach a (local) minimum of the loss function by
iteratively and incrementally adjusting the learning parameters in the direction of steepest local
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descent. Denoting by Wi(t) the state of Wi at iteration t,

Wi(t+ 1)←Wi(t)− η
∂L

∂Wi
(W1(t), . . . ,WN (t))

For our linear networks, in the case that the covariance matrix of the dataset x is equal to the identity
(which one can always obtain through a transformation known as whitening Kessy et al. (2018)), we
can recast this into the following form Arora et al. (2019)

L = min
Wi,1≤i≤N

L(W1, . . . ,WN ) = min
Wi,1≤i≤N

1

2
||WN · · ·W1 − Φ||2F

Where F denotes the Frobenius norm between matrices, and Φ = 1
myxT ∈ Rdy×dx the cross-

covariance matrix. Thus, we have formulated our problem to seek to minimize the Frobenius norm
between a target matrix and the product of matrices with learnable weights.

Given a network of this form, there are many results in the literature which guarantee convergence
during training with conditions on the weight matrices. We give a particularly cited result below,
proved in Arora et al. (2019).

Definition 3.1. For δ ≥ 0, we define that the matricesWi, 1 ≤ i ≤ N as given above are δ-balanced
provided that

||WT
i+1Wi+1 −WiW

T
i ||F ≤ δ ∀1 ≤ i ≤ N − 1

This condition only needs to be true on weight initiation, since provided this it will remain so for all
iterations of gradient descent Arora et al. (2018). Furthermore, this is almost surely guaranteed for
an initialization via a random Gaussian distribution, as proved in Appendix B of Arora et al. (2019).

Definition 3.2. Given a target Φ ∈ RdN×d0 , it’s smallest singular value cmin(Φ), and c > 0, we
define that a matrix W ∈ RdN×d0 has deficiency margin c with respect to Φ if

||W − Φ||F ≤ cmin(Φ)− c

Intuitively, this can be interpreted as that every matrix at least as close to Φ as W satisfies that all its
singular values are at least a distance c from 0.

Finally we have the convergence result:

Theorem 3.3. If gradient descent on a linear neural network is initiated such that Wi, 1 ≤ i ≤ N
all have deficiency margin c > 0 with respect to Φ, and that their initial weights are δ-balanced
for some δ ∝ c2

N3 , then a sufficiently small learning rate will guarantee convergence to a global
minimum.

3.2 NEURAL NETWORKS AND QAOA

The above formulation of training classical linear neural networks bears many similarities to the
problem of learning unitaries in QAOA, where our goal is to find the times ti, τi, 1 ≤ i ≤ K that,
for a given target unitary U , will minimize the loss,

L = min
ti, τi,1≤i≤K

||e−iAtKe−iBτK · · · e−iAt1e−iBτ1 − U ||2F

Since classical deep learning theory is a longstanding field with a variety of powerful pre-proven
results, one may be tempted to cast the problem of learning unitaries into a problem of deep learning
and apply it’s techniques to shed theoretical insight on the former. Ultimately, we seek to explain the
overparameterization phenomenon observed in Kiani et al. (2020). However, upon comparison, we
immediately see a major problem. Namely, the QAOA is not linear; the resulting unitary is obtained
by the successive multiplication of matrix exponentials, where the free parameters to be trained are
located in the exponent. Hence, we seek an approach to linearize the problem.
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3.2.1 APPEALING TO u(n)

The fact that we are grappling with the problem of learning unitaries, for which U ∈ U(n) opens
the door to the rich theory of Lie groups, which we will draw from. Associated to the Lie group
U(n), viewed as differentiable manifold, is its tangent space at the identity e. This is known as the
Lie algebra u(n). As a matrix group (which we will do for the remainder of this section), u(n) can
be viewed as the set of skew-Hermitian n× n matrices. That is, X† = −X .

The reason which we appeal to the Lie algebra is due to the exponential map, which maps ele-
ments of u(n) to elements of U(n). For matrix Lie groups as we have, this reduces to the matrix
exponential.

exp(X) =

∞∑
k=0

1

k!
Xk

One can show that this sum is well defined. Furthermore, the fact that U(n) is both compact and
connected can be used to show that our exponential map is surjective Djoković (1980). That is, for
each U ∈ U(n). there exists an X ∈ u(n) such that exp(X) = U .

This naturally gives rise to a well-defined matrix logarithm which converges Hall & Hall (2003):

log(U) =

∞∑
k=1

(−1)k−1

k
(U − In)k

This allows us to recast the problem of learning unitaries in U(n) to a learning problem in u(n),
as 2 matrices will converge in the Lie group provided their logarithms converge in the Lie algebra.
Motivated by Hyland & Rätsch (2017) along with the Baker-Campbell-Hausdoff formula, at this
point we consider restricting the form of A and B to satisfy certain commutation relations which
will allow the problem to be linearized from the perspective of the Lie algebra. For instance, in the
case where A and B are commute, or simultaneously diagonalizable as Hermitian operators from
the GUE, the problem can be framed as that of a depth-1 network. Seeing what other commutation
relations we can do this for is currently an area of our investigation.

3.3 USING NATURAL GRADIENT DESCENT

In the spirit of neural networks, a natural question is to wonder how the rate of convergence is
affected if we change the optimizer. Aside from naive gradient descent on which Kiani et al. (2020)
based their analysis, the paper also compared the effects of using the Adam optimizer. They found
that although the asymptotic losses were consistent to those obtained through gradient descent, the
rate of convergence was much faster.

In a similar vein, we thought it would be interesting to compare these results for those obtained from
a natural gradient, motivated by QAOA and VQE-motivated discussions on the quantum natural
gradient in Stokes et al. (2020).

In classical deep learning theory, the l2 geometry given in our case by the Frobenius norm is ill-
equipped to weight space due to a general parameter redundancy Neyshabur et al. (2015). However,
when viewed as a smooth manifold, the statistical space permits a definition of the Fisher infor-
mation metric, which is the infinitesimal form of the relative entropy. Natural gradient descent
increments the weights in the direction of steepest descent with respect to the geometry defined by
this metric (viewing now our space as a Riemannian manifold). One advantage of this approach
include that it is invariant under reparameterizations which may distort the space, leading to large
plateaus in the l2 norm and make training very difficult Amari (2000). Hence, when applied to our
problem, we expect that the losses to converge faster.

However, upon implementing this optimizer, we found the opposite; the losses took up to 2 times as
long to converge when compared to the naive gradient descent optimizer used in Kiani et al. (2020).
We suspect this may be due to the selection of learning rate in the natural gradient optimizer. A topic
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of current investigation involves testing this over a greater range of learning rates spanning from
10−1 to 10−4. It is expected that, for the optimal learning rate, the rate of convergence will exceed
that of (stochastic) gradient descent. Lastly, just as with the Adam optimizer, the asymptotic losses
did not change compared to using gradient descent for given parameter sizes. This can be explained
by that the amount of information which can be encoded in the parameters does not change, and
although for fewer than 2d2 parameters there is not enough freedom to encode the entire unitary,
there is still roughly a closest alternative which is found regardless of the optimizer.

4 CONCLUSION AND FUTURE WORK

This report attempts to address the dependence on overparametrization that occurs when learning
Haar random unitaries with gradient descent. We approached this problem from two sides, the
quantum optimal control side and the classical deep learning approach.

From the quantum optimal control approach, we introduced the general setup of quantum optimal
control problems as well as three conditions that when all hold true, is sufficient for the optimiza-
tion landscape to not have any local traps. To close off the quantum optimal control section, we
rephrased the problem as a quantum optimal control problem that uses the QAOA and ran some
experiments. Our numerical experiment suggests that if the control Hamiltonians A,B are taken to
be randomly sampled from a traceless Gaussian unitary ensemble, it is likely that the problem is no
longer controllable.

With regards to deep learning theory, we saw explicitly the similarities between minimizing the
Frobenius norm between the learned unitary and target unitary in QAOA, compared to training
linear neural networks, except weight matrices in the latter are replaced with exponentials in the
former. Studying this connection involves linearizing our problem, for which we used Lie theory
to view it from the perspective of the Lie algebra for special cases of commutators. Whether this
relation holds in general remains to be seen, and is a subject of further study. Finally, we found
unituitively that by using natural gradient descent, the loss took more steps to converge.

For future work, from the optimal control side, one approach would be to investigate whether a
bang-anneal-bang protocol would also be more suitable for this generating unitaries optimal control
problem and whether we can apply Pontryagin’s minimum principle to this problem in a similar
manner as shown in Section 2.3.
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