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Abstract

It is well known that the ground states of local Hamiltonians can exhibit multi-partite entanglement.
The entanglement of these ground states is important in many-body physics; for example, it can
lead to peculiar forms of matter such as Bose-Einstein condensates. Area laws can be used to bound
the entanglement complexity of ground states of certain types of 1-D Hamiltonians by a constant.
This report reviews two seminal papers that opened the doors for computer scientists to investigate
area laws and provide better bounds for the entanglement of ground states of 1-D Hamiltonians.
Some extensions of 1-D area laws are also discussed, including how area laws lead to the possibility
of approximating such ground states efficiently, and in such a manner that the representation of
the approximate ground state is both useful for the simulation of quantum many-body systems and
provides information about the structure of entanglement present in the state.
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1 Introduction

Area laws provide bounds on the complexity of entanglement that ground states of a quantum
system can exhibit. Consider a system where particles are placed on a lattice. Area laws say that
the entanglement entropy between two partitions of a quantum state of such a system can, at most,
grow proportionally with the boundary between the two partitions, as demonstrated in Figure 1.1.
In one dimension (ie. a 1-D chain), this means that the entanglement entropy of the ground state
across any cut must be constant with respect to the number of particles.

One of the main motivations behind deriving area laws comes down to knowing whether or not we
are able to come up with efficient classical representations of the ground states of a Hamiltonian.
If the entanglement of the ground state is highly complex, this task becomes intractable. However,
area laws allow us to put an upper bound on the complexity of entanglement, and as a result we
can come up with efficient approximations of the ground states using tools such as matrix product
states, which are useful for simulating quantum many-body systems as well as understanding the
structure of the entanglement of quantum states.

This paper will discuss area laws for one dimensional systems, including how specific bounds on
the ground state entanglement were derived, as well as the importance of not only the area laws
themselves, but their proofs as well. In addition, some of the applications and extensions of area
laws will be touched upon.

Figure 1.1: Particles on a lattice separated into two sets: those within the dashed line, and those
outside. According to the area law, the entanglement entropy of the ground state between these
two partitions depends only on the boundary (the red particles).
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2 Background Concepts

2.1 Local, Gapped, and Frustration-Free Hamiltonians

Definition 2.1 (k-Local Hamiltonian). A Hamiltonian is k-local if it can be written as the sum of
Hamiltonians (referred to as Hamiltonian terms) that act on at most k qubits.

Definition 2.2 (Gapped Hamiltonian). In the context of 1-D area laws, this refers to constant-
gapped Hamiltonians. These are Hamiltonians for which the ground state energy is zero, and the
next lowest eigenvalue is greater than or equal to some constant ε, referred to as the spectral gap.

Definition 2.3 (Frustration-Free Hamiltonian). If the ground states of the total Hamiltonian are
also ground states of each of the local Hamiltonian terms, then the Hamiltonian is considered to be
frustration-free. Otherwise, it is referred to as frustrated.

2.2 Entanglement Complexity

2.2.1 Schmidt Rank

Theorem 2.4 (Schmidt Decomposition). Consider a pure state |ψ〉 whose qubits are partitioned
into two non-intersecting sets A and B (ie. |ψ〉 is a vector on the tensor product of the corresponding
Hilbert spaces: HA ⊗HB). Then there exist orthonormal bases {|i〉A} and {|i〉B} such that

|ψ〉 =
∑
i

αi|i〉A|i〉B

This is called the Schmidt decomposition of |ψ〉.

The coefficients αi are called the Schmidt coefficients and are non-negative real numbers which
satisfy

∑
i α

2
i = 1.

The Schmidt rank of |ψ〉 is the number of non-zero Schmidt coefficients in its decomposition.

2.2.2 Entanglement Entropy

Entanglement entropy is a measure of the degree of entanglement of a bipartite state. With the
Schmidt decomposition of such a state in mind, the Von Neumann entanglement entropy of |ψ〉
is defined as

S = −
∑
i

|αi|2log(|αi|2)

3 1-D Area Laws

In [9], Hastings first showed that the entanglement entropy across any cut in a gapped 1-D system
was bounded by a constant that was independent of the number of particles in the system. These
results implied that the problem of approximating ground states of such Hamiltonians is in the
NP complexity class [6]. However, the proof of this involved complicated analytical methods.
Aharonov et al. [2] followed up with a proof for a specific, yet rich, class of Hamiltonians that made
the subject of area laws more accessible to computer scientists. This simplified proof relies on the
Detectability Lemma, which was introduced by the same authors in a previous paper [3], but in [2]
it is presented in a more basic context than the previous work.
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3.1 Detectability Lemma

The Detectability Lemma (DL) in [2] considers a 1-D gapped, frustration-free, local Hamiltonian
whose Hamiltonian terms are positive semi-definite and have a norm of at most 1. In particular,
the system under consideration is one where particles are placed on a line and only exhibit nearest-
neighbor interactions (thus, the Hamiltonian terms are 2-local). The goal of the DL is to show
that the ground state of such a system can be approximated by applying a local operator to
an unentangled product state. This local operator must therefore approximate the ground state
projection operator.

Let Pi be the projection onto the ground state of the Hamiltonian term Hi. Since each Hi is 2-
local, the terms can be partitioned into two sets - one containing odd numbered terms, and another
containing even number terms - such that the terms in each set do not act on any of the same
particles. This is demonstrated in Figure 3.2. Two operators are then defined as the products of
the projections onto the terms in each set. That is:∏

odd = P1P3P5...
∏
even = P2P4P6...

The operator that can be used to approximate projection onto the ground space is then

A =
∏
odd

∏
even

In simple terms, the DL says that applying the local operator A to a state reduces the overlap
between that state and the orthogonal complement of the ground space by a constant factor. It
can be thought of as ”getting rid” of parts of the state not in the ground space of the Hamiltonian.
More precisely:

Lemma 3.1 (Detectability Lemma). Let A =
∏
odd

∏
even, and H′ be the orthogonal complement

of the ground space of the Hamiltonian. Then

‖A|H′‖ ≤
1

(ε/2 + 1)1/3

where ε is the spectral gap of the Hamiltonian [2]

This means that applying the operator A multiple times gives a better and better approximation
of the projection onto the ground state. In particular, applying this operator l times approximates
the projection onto the ground state exponentially well:

Al = Pground state + e−O(l)

where Pground state is the projection onto the ground state.

3.2 1-D Area Law

3.2.1 Statement of the Area Law

Continuing with the 1-D system we have considered in section 3.1, the area law in 1-D provides an
upper bound to the entanglement entropy (as defined in section 2.2.2) across any cut along the
chain.
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Figure 3.2: The even and odd 2-local Hamiltonian terms partitioned into two layers. No two
terms in the same layer act on the same particle. [2]

Although the particles are set up along one dimension, each particle is allowed to have a dimension
d ≥ 2. For example, d = 2 for a system of qubits. The upper bound given by the 1-D area law
depends on this dimensionality, as well as on the spetral gap of the Hamiltonian. We now consider
a cut along the chain of particles that splits the particles into two connected chains, A and B, on
either side of the cut.

Theorem 3.2 (Area Law for 1-D Frustration-Free Gapped Hamiltonians). For any cut along the
chain of particles, the magnitude of the entanglement entropy, S, of the ground state across the cut
satisfies the following inequality:

S ≤ 10

δ
d4/δ(ln(d))2

where d is the dimensionality of each particle, and δ is defined in terms of the spectral gap, ε, as
δ = 1− (1 + ε/2)−1/3 [2]

This means that if the system is in the ground state of the Hamiltonian, the particles on one side
of the cut cannot share infinitely complex entanglement with the particles on the other side of the
cut; the entanglement entropy must be finite in this case. It is significant to note that this bound
on the entanglement entropy is constant with respect to the number of particles in the system.

3.2.2 Overview of Proof

The proof of this 1-D area law is the starting point from which much future work in the subject
of area laws built upon. Thus it is valuable to understand the proof, as its relative simplicity
demonstrates how it opened the doors for computer scientists to research area laws.

The proof of the area law in Theorem 3.2 relies on two key lemmas, both of which can be proved
using the DL.

Lemma 3.3. For any cut along the chain of particles, there exists a product state |ψ1〉A ⊗ |ψ2〉B
which has a constant, non-zero, overlap with the ground state:

‖〈Ω|(|ψ1〉A|ψ2〉B)‖ ≥ µ

where |Ω〉 is the ground state, |ψ1〉A describes the state of the particles on one side of the cut
(and similarly |ψ2〉B for those on the other side), and µ is a non-zero constant that depends on the
spectral gap of the Hamiltonian and the dimensionality of the particles.[2]

The following is a summary of the proof of Lemma 3.3:

1. Let ρ2l be the density matrix of the ground state Ω, limited to the l particles on either side
of a cut, for some large enough constant l. Let ρlA and ρlB be the reduced density matrices of
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Ω restricted to the l particles on the left and right side of the cut respectively. Thus, ρlA⊗ ρlB
is referred to as the ”disentangled” version of ρ2l.

2. By contradiction to Lemma 3.3, assume that the overlap between Ω and any product state
|ψ1〉A ⊗ |ψ2〉B is smaller than some constant, µ. This includes the product state associated
with ρA⊗ρB (notice this is not limited to the l particles on either side of the cut). Then there
must exist a measurement (the projection onto the ground state) that distinguishes between
ρ2l and ρlA⊗ ρlB with a constant, non-zero, probability. The DL from section 3.1 can be used
to approximate this measurement by applying the operator A l/2 times [2]

3. The existence of such a measurement indicates that the entanglement across the cut is sig-
nificantly large, as that is the difference between the two states which caused them to be
distinguishable. Slightly more formally,

S(ρlA) + S(ρlB)− S(ρ2l) ≤ δ

2
l − 1

which just says that the difference between the entanglement entropy of ρ2l and the sum
of the entanglement entropies of ρlA and ρlB must be at least some constant that depends
on δ and l. Note that the value of l is essentially a measure of how good the ground state
approximation is, since the higher the value of l, the more times the operator A from the DL
is applied (recall that A moves a state closer to the ground state each time it is applied).

4. Finally, it is shown that applying this inequality recursively (to cuts located at the halfway
point of each of the two segments made the previous cut) leads to a contradiction in the
value of the entanglement entropies of ρlA and ρlB. This implies that the assumption in step
2 must be false, proving the result of Lemma 3.3: the overlap between the ground state and
the product state associated with ρA ⊗ ρB is at least µ.

From the proof of Lemma 3.3, the value of µ is ultimately shown to be:

µ = d−l(1− δ)l0/4

where l0 = d4/δ [2]

The second lemma starts by assuming the result of the first:

Lemma 3.4. If there exists a product state |ψ1〉A ⊗ |ψ2〉B such that ‖〈Ω|(|ψ1〉A|ψ2〉B)‖ ≥ µ, then
the entanglement entropy of the ground state across the cut is bounded by

S ≤ 3

δ

(
ln(

1

µ2δ
) + 2

)
ln(d)

[2]

To understand the reasoning behind the proof of this Lemma, first recall that the A operator
from the DL lets us get the state |ψ1〉A ⊗ |ψ2〉B exponentially close to the ground state without
significantly increasing the Schmidt rank. Aharonov et al. [2] show that after applying A l times,
the resulting state is close to the ground state and has a constant upper bound on its Schmidt rank.

Now, consider the following fact:
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Fact 3.5. Given a state vector |Ω〉 on HA ⊗ HB, the largest inner product between |Ω〉 and any
normalized vector |ψ〉 with Schmidt rank r is given by

〈φ||ψ〉 ≤

√√√√ r∑
i=1

λi

where λ1 ≥ λ2 ≥... are the eigenvalues of the reduced density matrix of |ψ〉 [2]

Using this fact, we see that the bound (r) on the Schmidt rank of the approximate ground state
provides an upper bound on the sum of the d2l largest Schmidt coefficients of the ground state itself
(the norm squared of the ith Schmidt coefficient is equal to λi).

Finally, this bound can be used to show that the worst case upper bound on the entanglement
entropy of the ground state across any cut is that given in Lemma 3.4

Since d ≥ 2 and l is a large integer, we get that µ ≤ δ. It can also be shown that ln( 1
µ) ≤ 6 by

making some assumptions about the size of the spectral gap. From there, the two lemmas can be
applied in succession to arrive at the area law of Theorem 3.2.

3.3 Exponential Improvement of the 1-D Area Law

In a follow-up paper to [2], Arad et. al. presented a new 1-D area law for gapped Hamiltonians
that greatly reduced the upper bound on the entanglement entropy. [6]

3.3.1 Improved 1-D Area Law

The improved 1-D area law in [6] states that the entanglement entropy across any cut in the chain
of particles is bounded by

S ≤ O(
log3d

ε
)

This is clearly a tighter bound than that of [2], and in fact is exponentially better than Hastings’

original bound [9], which was eO(
log(d)
ε

) [6]. This is important because the proof for this improved
area law, similar to Hastings’ result, doesn’t depend on the Detectability Lemma. This means that
unlike the area law in [2], it is not limited to frustration-free Hamiltonians. Instead, this new area
law can be applied to frustrated Hamiltonians as well.

3.3.2 Overview of Proof

Similar to the DL strategy, the key is to find an operator that can be applied to a product state
repeatedly in order to approximate the ground state of this new Hamiltonian, without making the
entanglement rank too large.

Such an operator is referred to as an Approximate Ground State Projector (AGSP), which
is loosely defined as follows:

Definition 3.6 (Approximate Ground State Projector (AGSP)). An operator, K, is a (D,∆)-
AGSP if the following properties hold

1. Applying K to any quantum state increases its entanglement rank by at most a factor of D
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Figure 3.3: The modified Hamiltonian, H(t). HL (HR) is the sum of all the terms to the left
(right) of the cut that were truncated. The particles in between HL and HR adhere to their original
Hamiltonian terms [6]

2. For any quantum state, |ψ⊥〉, in the orthogonal complement of the ground space of the Hamil-
tonian:∥∥K|ψ⊥〉∥∥2 ≤ ∆

As was the case with the DL, the second property is to ensure that applying the operator to a state
moves it closer to the ground state by decreasing its overlap with the orthonormal complement of
the ground space.

With the two properties of an AGSP above, by arguments similar to the ones made in section 3.2.2,
it can be shown that the following theorem is true:

Theorem 3.7 (Area Law). If there exists a (D,∆)-AGSP such that D ·∆ ≤ 1
2 , then the entangle-

ment entropy of the ground state is bounded by

S ≤ O · log(D)

[6]

All that is left is to construct a suitable AGSP. Begin by truncating the Hamiltonian terms that
act on particles outside of the s+1 particle neighbourhood of the cut (ie. far from the cut). The
truncation involves replacing any eigenvalues of the terms that are larger than some t with t itself.
The resulting Hamiltonian, H(t), is shown in Figure 3.3. This modification allows the norm of the
Hamiltonian to be bounded by u = s+ 2t. [6]

In the frustration-free case, the ground state of this new Hamiltonian is the same as that of the
1-D chain, but if the Hamiltonian is frustrated there must be a compromise between the norm of
the new Hamiltonian and how close its ground state is to that of the original Hamiltonian.

The AGSP, K, is chosen to be a Chebyshev Polynomial of degree l (Cl(x)) whose argument is the
truncated Hamiltonian (more explanation on these polynomials and how they are used to construct
such operators can be found in [6], as well as in a previous paper by Arad et. al. [5]). This choice of

K = Cl(H
(t)) implies that ∆ = e−Ω(l

√
ε/u), where Ω refers to ”Big Omega” notation. Furthermore,

it can be shown that the entanglement rank of K is at most D = (dl)O(l/s+s). [6]

For the frustration-free case, if l and s are chosen to be l = O(s2) and s = Õ( log
2d
ε ), Theorem 3.7

can then be applied to get the area law in section 3.3.1. For the frustrated case, Arad et al. [6]
first demonstrate that the ground states of H(t) are exponentially close in t to the ground states
of H and that the spectral gaps of the two Hamiltonians are of the same order. Then, rather
than apply the same AGSP several times to approximate a projection onto the ground state, for a
carefully chosen sequence of values of t, the associated AGSPs are applied to the desired product
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state. This is done in lieu of direct application of Theorem 3.7 in order to guide a state towards
the ground space of H without increasing the entanglement rank too much, which is what would
happen should Theorem 3.7 be applied directly. This process results in the area law of section
3.3.1, but now demonstrates that the area law holds for frustrated Hamiltonians as well.

4 Efficient Ground State Approximation

The 1-D area laws that have been described demonstrate that ground states of 1-D gapped Hamil-
tonians can be approximated relatively efficiently. As previously stated, Hastings’ area law implied
that the task of approximating these ground states is in the NP complexity class. Furthermore,
Arad et. al. [6] show that there exists an algorithm for approximating these ground states that is
sub-exponential, which provides evidence that this task is not NP-Hard.

4.1 Tensor Networks

Just like specifying the coefficients of a wave function, tensor networks are a way of representing
a quantum state classically. Tensor networks provide several advantages. Rather than writing out
a wavefunction, which can be extremely complicated for highly entangled states, tensor networks
are represented by drawing tensor network diagrams, which capture the entanglement properties
of a system. This is one benefit over simply specifying coefficients of a wavefunction which doesn’t
make apparent the structure of the entanglement between different components of the system.

Tensor networks are especially useful for efficiently representing quantum states. A general quantum
state of n qubits can be written as

|ψ〉 =
∑

i1i2...in

Ci1i2...in |i1〉 ⊗ |i2〉 ⊗ ...⊗ |iN 〉

for i = 1, 2 (since qubits have 2 degrees of freedom).[12]

There are 2n numbers Ci1i2...in , which means that the number of parameters required to describe
the system is exponential in n. These numbers can be thought of as coefficients that make up a
tensor, C, of rank n. By replacing this large tensor with a tensor network of smaller-rank tensors,
the state can be represented more efficiently. [12]

The tensors in the resulting tensor network are connected by indices that represent the entanglement
between different parts of the many-body system. The number of different values these indices can
take is referred to as bond dimensions, and the higher their value, the more quantum correlations
are present in the state. The largest of these is called the bond dimension of the tensor network.
[12]

4.2 Matrix Product States

Matrix product states (MPS) are a a type of tensor network state that corresponds to a 1-D
array of tensors, and are the basis of some very powerful algorithms for simulating 1-D quantum
many-body systems. [12]

MPS can be used to represent any quantum state of an n-particle system, but to cover all possible
states the bond dimension must be exponentially large in n. It is known that for 1-D systems, low
energy states can be approximated by a MPS of bond size that grows polynomial in n. [12]
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[7]

Figure 5.4: The subset S lies in the light-blue shaded region. According to a generalized area
law, the entanglement entropy of the ground state would depend linearly on the number of edges
leaving this shaded area.

Using the results and proof techniques outlined in section 3.3, Arad et al. [6] prove that the ground
state of a 1-D gapped frustration-free Hamiltonian can be approximated to within 1

poly(n) by a

MPS with sub-linear bond dimension of size eO(ε−1/3log
3
2 n), thus providing proof of a very efficient

and useful way of approximating the ground states of such systems.

5 Further Advancements and Open Questions

One logical extension to area laws is what is known as a generalized area law. These area laws
are not restricted to lattice systems. Instead, they apply to systems whose Hamiltonian terms
correspond to edges of an arbitrary graph, as shown in Figure 5.4. In this case, the area law
says that for any subset of particles, S, the entanglement entropy between S and S is linearly
proportional to the number of edges leaving S. [1]

Aharonov et al. disproved this generalized area law in [1] by presenting systems that act as counter-
examples. However, in [4], Anshu et al. demonstrate that gapped local Hamiltonian systems,
including those that violate the generalized area law for entanglement entropy, still exhibit gener-
alized area law behaviour in the entanglement spread of the ground state (which roughly measures
the log of the ratio between the largest and smallest Schmidt coefficients of the ground state across
a bipartition). This result is not restricted to 1-D systems, and although it applies to any ar-
bitrary interaction graph, the bound on the entanglement spread is improved if the Hamiltonian
corresponds to a lattice system. [4] However, entanglement entropy area laws in 2-D and higher
dimensions remain an open area of research. Though no such area laws have been proven, sim-
ulations of 3-D quantum fluids have demonstrated the existence of area law behaviour in higher
dimensions. [10]

Another related area of interest is the search for area laws for other classes of Hamiltonians (in 1-D
and higher) that exhibit area law behaviour, such as for long-range interacting systems. [8], [11]
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6 Conclusion

We have presented area laws for 1-D gapped Hamiltonians, and from their proofs laid out some of
the basic tools used in modern research of entanglement area laws, including in higher dimensions
(in particular Approximate Ground State Projectors, which were inspired by the Detectability
Lemma from [2]). Furthermore, we discussed how these area laws make possible the effective
representation of the ground states of these Hamiltonians as matrix product states, allowing for
efficient numerical simulation of the ground states. Finally, while proofs of higher dimensional area
laws remain elusive, it has been shown that quantum many-body systems different from the class of
Hamiltonians first considered by Hastings [9] can exhibit area law behaviour, providing motivation
for the continued search.

References

[1] Dorit Aharonov et al. “Local Tests of Global Entanglement and a Counterexample to the
Generalized Area Law”. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science (Oct. 2014). doi: 10.1109/focs.2014.34. url: http://dx.doi.org/10.1109/
FOCS.2014.34.

[2] Dorit Aharonov et al. Quantum Hamiltonian complexity and the detectability lemma. 2011.
arXiv: 1011.3445 [quant-ph].

[3] Dorit Aharonov et al. The Detectability Lemma and Quantum Gap Amplification. 2008. arXiv:
0811.3412 [quant-ph].

[4] Anurag Anshu, Aram W. Harrow, and Mehdi Soleimanifar. From communication complexity
to an entanglement spread area law in the ground state of gapped local Hamiltonians. 2020.
arXiv: 2004.15009 [quant-ph].

[5] Itai Arad, Zeph Landau, and Umesh Vazirani. “Improved one-dimensional area law for frustration-
free systems”. In: Physical Review B 85.19 (May 2012). issn: 1550-235X. doi: 10.1103/

physrevb.85.195145. url: http://dx.doi.org/10.1103/PhysRevB.85.195145.

[6] Itai Arad et al. An area law and sub-exponential algorithm for 1D systems. 2013. arXiv:
1301.1162 [quant-ph].

[7] J. Eisert, M. Cramer, and M. B. Plenio. “Colloquium: Area laws for the entanglement en-
tropy”. In: Reviews of Modern Physics 82.1 (Feb. 2010), pp. 277–306. issn: 1539-0756. doi:
10.1103/revmodphys.82.277. url: http://dx.doi.org/10.1103/RevModPhys.82.277.

[8] Zhe-Xuan Gong et al. “Entanglement Area Laws for Long-Range Interacting Systems”. In:
Physical Review Letters 119.5 (July 2017). issn: 1079-7114. doi: 10.1103/physrevlett.
119.050501. url: http://dx.doi.org/10.1103/PhysRevLett.119.050501.

[9] M B Hastings. “An area law for one-dimensional quantum systems”. In: Journal of Statistical
Mechanics: Theory and Experiment 2007.08 (Aug. 2007), P08024–P08024. doi: 10.1088/
1742-5468/2007/08/p08024. url: https://doi.org/10.1088%2F1742-5468%2F2007%
2F08%2Fp08024.

[10] C. M. Herdman et al. “Entanglement area law in superfluid 4He”. In: Nature Physics 13.6
(Mar. 2017), pp. 556–558. issn: 1745-2481. doi: 10.1038/nphys4075. url: http://dx.doi.
org/10.1038/nphys4075.

11

https://doi.org/10.1109/focs.2014.34
http://dx.doi.org/10.1109/FOCS.2014.34
http://dx.doi.org/10.1109/FOCS.2014.34
https://arxiv.org/abs/1011.3445
https://arxiv.org/abs/0811.3412
https://arxiv.org/abs/2004.15009
https://doi.org/10.1103/physrevb.85.195145
https://doi.org/10.1103/physrevb.85.195145
http://dx.doi.org/10.1103/PhysRevB.85.195145
https://arxiv.org/abs/1301.1162
https://doi.org/10.1103/revmodphys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/physrevlett.119.050501
https://doi.org/10.1103/physrevlett.119.050501
http://dx.doi.org/10.1103/PhysRevLett.119.050501
https://doi.org/10.1088/1742-5468/2007/08/p08024
https://doi.org/10.1088/1742-5468/2007/08/p08024
https://doi.org/10.1088%2F1742-5468%2F2007%2F08%2Fp08024
https://doi.org/10.1088%2F1742-5468%2F2007%2F08%2Fp08024
https://doi.org/10.1038/nphys4075
http://dx.doi.org/10.1038/nphys4075
http://dx.doi.org/10.1038/nphys4075


[11] Tomotaka Kuwahara and Keiji Saito. “Area law of noncritical ground states in 1D long-range
interacting systems”. In: Nature Communications 11.1 (Sept. 2020). issn: 2041-1723. doi:
10.1038/s41467-020-18055-x. url: http://dx.doi.org/10.1038/s41467-020-18055-x.
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