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Abstract

Finding the lowest-energy arrangement of electrons in a molecule is an exponential-time problem on
a classical computer. We describe here the variational quantum eigensolver, a method that can work on
small noisy quantum computers. Using the fact that quantum computation can efficiently find energy
expectation values of trial states, this method gives an upper bound for the ground-state electronic
energy. As a demonstration, we demonstrate the method by computing an estimate of the ground-state
energy of the H2 molecule.

1 The electronic structure problem

The central problem of computation chemistry is this: given an arrangement of atoms, find the energy of the
ground-state arrangement of electrons. Solving this problem would give reveal the reactivity, geometry, and
spectroscopy of any molecules. More formally, the problem is to find the ground state of the Hamiltonian
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Here, the first term gives the kinetic energy of the electrons, the second describes the electric attraction
between the electrons and nuclei, and the last describes repulsion between electrons. Here i, j represent
coordinates of electrons, for which we hope to solve, and J represent coordinates of nuclei, which we take to
be given and unmoving, because nuclei are so large and slow compared to electrons.

Solving such problems scales exponentially in the number of electrons. Methods to solve this problem
efficiently on a classical computer, such as Hartree-Fock or density functional theory must essentially ignore
the dimensionality of the problem, by assuming that electrons are repelled with an averaged electron density,
not with n− 1 other discrete electrons.[1] This treatment of electron interaction is systematically incorrect,
generally underestimating the interaction energy.

The ability of a quantum computer to store and operate on the whole, high-dimensional electronic
wavefunction suggests a way to efficiently solve this problem. We describe here the variational quantum
eigensolver, a method for tightly bounding above the ground-state energy. Essentially, this method relies on
the fact that the expectation value of an operator on any state can be found quickly on a quantum computer.
Minimizing energy over a family of states then estimates the true ground state energy.

There are other quantum algorithms to solve the electronic structure problem, but only this one can run on
small, noisy computers of the kind available today. As a demonstration, we have written an implementation
to find the ground state energy of molecular hydrogen and run it on quantum computers available to the
public.

Here, we show how this algorithm works, as an example give some results from our implementation, and
conclude by discussing future areas of study.

2 Mapping the problem to a quantum computer

2.1 Discretizing the problem

To solve the electronic structure problem, we would like to work in a finite-dimentional basis. To do this,
assume that all possible wavefunctions can be written as a superposition of some number of orbitals. If the
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number of orbitals is allowed to be very large, many collection of functions will include a close approximation
to any state. A common basis is a large number of Gaussian functions centered at each atom.

On the other hand, if the basis must be small, then the choice of basis must be guided by physical
principles. In choosing a small set of basis functions and hoping that their span contains a close approximation
to the true ground-state energy, we are implicitly choosing our family of ansatze that will be used for the
variational eigensolver. The choice of this basis is based on inexpensive classical methods for estimating
ground-state wavefunctions. The basis set of atomic orbitals assumes that molecular orbitals look similar to
those on single atoms. Hartree-Fock, again a method which takes into account electron-electron interaction
in an averaged way, can also be used to generate a basis set. When we simulate hydrogen, we use this
Hartree-Fock basis.

2.2 The Occupation Number Basis

Now that the space is discrete, it is possible to write down a finite basis and describe the Hamiltonian
in terms of this basis. The Pauli exclusion principle says that an orbital can contain either zero or one
electrons1. Given n orbitals, there are 2n ways these orbitals can be occupied. To write one of these states
in the occupation representation basis, write |[0, 1]n〉, and set entry i as 1 if orbital i is occupied, and 0
otherwise. A convenient operator in this basis are the creation and annihilation operators, which change the
occupation of some state. All operators on an electronic system can be written in terms of products of the
annihilation and creation operators. The creation operator a†i adds an electron to orbital i if it is empty.
Likewise, the annihilation operator ai removes a particle from orbital i if it is occupied. Applying a creation
operator to a filled orbital, or removing from an empty orbital yields 0.

The electronic-structure Hamiltonian can be re-written in sums of products of these operators: The
operators a†iaj for some i, j act as basis for single-electron operators, like the kinetic energy and the electron-
nucleus attraction, as this operator projects the one-electron state |j〉 onto |i〉. Likewise, the operators

a†ia
†
jakal act as a basis for the two-particle electron-electron interaction.[1]

On a quantum computer, the one qubit gate Q+ = 1
2 (X − iY ) acts as a creation operator, sending |0〉

to |1〉 and |1〉 to 0. The gate Q− = 1
2 (X + iY ) is the annihilation operator. Here, X,Y, Z are the Pauli

matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
Unfortunately, these annihilation and creation operators are not the right operators for an electronic

system. Electrons are fermions with exchange anti-symmetry, so the creation and annihilation operators
must obey the relations

aiaj + ajai = a†ia
†
j + a†ja

†
i = 0, a†iaj + aja

†
i = δkjI

One way to implement these commutation relations is to enforce that adding or removing an electron into
state i introduces a phase −1total occupation of state 0 to i-1. On the quantum computer, the creation operator
with the right anti-symmetry becomes the many-qubit gate

Z0 ⊗ · · · ⊗ Zi ⊗
1

2
(Xj − iYj)⊗ Ij+1 ⊗ · · · ⊗ In

The task then becomes to find a different representation of the occupation states of the system which
will reduce the number of gates on the quantum computer needed to simulate the fermionic annihilation and
creation operators.

2.3 The parity basis

The central idea is transform to a basis which represents the occupation of site i, but reduces the number of
necessary Z operations by recording the parity of the number of electrons in all earlier states.[3] The parity

1Orbitals here also include spin: one physical orbital can contain two electrons of opposite spin, but we split it into two spin
orbitals.
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basis is the most obvious choice choice. In this representation, set entry i in the state |[0, 1]n〉 to 0 if the
number of electrons from 0 to i is even and 1 otherwise.

This choice of basis is even worse than the occupation number basis. While adding or removing an
electron now requires only one application of the Z gate to state i − 1, X gates must be applied to qubits
i + 1 . . . n, flipping these bits so that they can account for the presence the change in parity of the number
of electrons in lower states. Therefore this basis does not reduce the number of gates.

In addition, which gate to apply to state i in order to create or annihilate a particle there now depends
on whether |0〉 represents an occupied or unoccupied orbital: If state i−1 has |0〉, then the entry |1〉 in state
i represents a occupied state i as before, and the Q+, Q− gates can be applied as above. If state i − 1 has
|1〉, then simulating a creation requires applying the annihilation gate Q−, and vice versa. The two-qubit
gate

Q±∗ =
1

2
(Zj−1 ⊗Xj ∓ Ij−1 ⊗ iYj)

implements this operation.
While this most obvious choice of basis fails to reduce the number of operations, it illustrates a trade-off

between applying many Z gates to keep track of phase or many X gates to keep track of parity. There exists
a basis which compromises between these two, and manages to require only O(log n) gates total.

2.4 The Bravyi-Kitaev basis

The interpretation of the elements of the state vector in this basis is not as physically clear as for the occu-
pation or parity bases. This basis, first described in [2], is designed to efficiently write fermionic operators
in terms of qubits. In this basis, a state i records the parity of of the electrons in states i through i − k,
where k = minn (i mod 2n ≡ 0). In other words, each state is the sum (mod 2) of the number of electrons
in k orbitals, where k is the first place missing from the binary representation of i. To illustrate, what
information states 0–7 record is tabulated:

i i2 k Encodes information about
0 000 1 0
1 001 2 0, 1
2 010 1 2
3 011 4 0, 1, 2, 3
4 100 1 4
5 101 2 4, 5
6 110 1 6
7 111 8 0, 1, 2, 3, 4, 5, 6, 7

Three pieces of information are necessary in order to determine the action of ai on this basis: First, which
states must flip parity when the number of electrons in state i changes? In other words, which states include
information about state i? Secondly, which states must pick up a phase when state i changes, because they
contain information about states less than i? Finally, when should Q+

i or Q−i be applied to annihilate or
create in state i?

The first question is the simplest. The set which encodes information about state i can be found by
calculating which states are included in every state j, as in the table above, and then taking the inverse. If
there is a conveniently written exact formula, it is not known. There are at most log n states which include
information about state i, so annihilating or creating in state i causes at most log n applications of gate X.

The second question asks which states include information about states with index lower than i. When i
updates, these must add a phase factor −1 so that the correct commutation relations hold. The easiest way
to determine this set is to construct the matrix taking the Bravyi-Kitaev basis to the parity basis. Again,
there are at most log n such states which must be operated on by Z each the occupation of i changes.

Finally, again at most log n states determine whether the state |0〉 in place i represents an unoccupied
or occupied orbital i, in order to correctly apply Q+ or Q−. Also again, there is no easy way to see what
this set should be, other than by constructing the matrix taking the Bravyi-Kitaev basis to the occupation
basis, and noting which states include information about state i and i− 1.
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Once these three sets is identified, writing out the exact gates corresponding to the operators ai and a†i
is both straightforwards and tedious. The exact form, as well as the forms for the two- and four-operator
products can be found in [3]. Importantly, this transformation has reduced the number of necessary gates
from scaling with n to scaling with log n, at the cost of only a little more pre-processing. It is not known if
the Bravyi-Kitaev is the basis mapping which minimizes the number of necessary gates.

3 Finding expectation values

As described above, the electronic structure Hamiltonian can be written in terms of the creation and anni-
hilation operators, and by Brevyi-Kitaev, there is a mapping of these gates onto Pauli gates applied on a
quantum computer. Estimating the ground state energy now requires finding

min
ψ
〈ψ|H|ψ〉

This section describes three ways to calculate expectation values of arbitrary states under any operator U .
Our implementation uses the last.

3.1 The Hadamard test

After preparing the state ψ, apply controlled U , with an ancilla |+〉 state as the control and ψ as the target.
Apply the Hadamard gate to the ancilla. This qubit is now in the state

Hd (|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉) = |0〉 ⊗ |(ψ + Uψ)〉+ |1〉 ⊗ |(ψ − Uψ)〉

so the probability of measuring in state 0 is

P (|0〉) = 〈(I + U)ψ〉 (I + U)ψ = 〈ψ〉 (I + U†)(I + U)ψ = 〈ψ〉 (I + U† + U + U†U)ψ = 2+〈ψ|U |ψ〉+〈ψ|U |ψ〉†

If all expectation values are real i.e. if U is also Hermitian, then this procedure gives 2(1 + 〈ψ|U |ψ〉. If not,
then using this procedure returns 2 + 2Re(〈ψ|U |ψ〉).

The Pauli matrices are indeed both Hermitian and unitary, so this procedure works well for the electronic
structure problem. However, it involves putting an additional qubit into superposition with ψ, and so
increases the error on a noisy quantum computer. For this reason, we do not use this method.

3.2 Using |ψ〉 = V |0〉
If we are to measure the expectation value of the state ψ, we must be able to produce it by applying some
operator to |0〉. Therefore,

〈ψ|U |ψ〉 = 〈V 0|U |V 0〉 = 〈0|V †UV |0〉
Applying V †UV and measuring in the standard basis will then give |〈ψ|U |ψ〉|2 This method does not preserve
all information about 〈ψ|U |ψ〉, because the spectrum of a unitary U cannot be all real and positive.

3.3 Measuring in the eigenbasis

If the eigenvectors of the matrix U are known, then measuring in the basis of eigenvectors can give the
expectation value. Say that U |φi〉 = λi |φi〉. Then

〈ψ|U |ψ〉 = 〈
∑
i

aiφi|U |
∑
i

aiφi〉 =
∑
i

|ai|2 〈φi|U |φi〉 =
∑
i

|ai|2λ =
∑
i

P (|φi〉)λi

Thus, measuring in the basis of eigenstates can give the expectation values. Note that this algorithm never
applies the matrix U , but instead applies the transformation sending the eigenstates to the standard basis
states. This transformation is guaranteed to exist, but might be expensive to find for large dimensional U .

In our implementation, we take the expectation of products of Pauli gates. In addition, the eigenstates of
a tensor product of matrices are the tensor products of the eigenstates of each component, and the eigenvalues
are the product of the corresponding component eigenvalues. Finding the eigenvectors of the component
2× 2 matrices is not difficult, so finding the right eigenbasis for the tensor products of Pauli matrices is not
difficult.
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4 The Variational Principle

The above section demonstrates how to use a quantum computer to efficiently find expectation values for
arbitrary states. The connection of this task to finding the ground state is not apparently obvious. Notice,
however that any state can be written in the basis of eigenstates of the energy operator

φ = α0φ0 + α1φ1 + α2φ2 + . . .

for some constants αi. If the energy of state φi is Ei, then the energy expectation value of φ is

〈φ|H|φ〉 =
∑
i

α2
iEi

Taking that the ground state E0 is smaller than the other Ei,

〈φ|H|φ〉 > E0

.
Physically, this is a result of the tautology that all states have a higher energy than the lowest energy

state. For this purpose of the variational eigensolver, we use that the expectation value of any state is an
upper bound on the true energy, and that the bound becomes tighter with larger α0, i.e. that the bound is
tighter when the state is closer to the the real ground-state energy.

The variational eigensolver uses these ideas in the following procedure: First, generate some ansatz
states which for some physical reason we believe to include some state very close to the ground energy
state. Next, calculate the energy expectation values of them all. The lowest one is the estimate for the
ground-state energy, and the state giving the lowest energy is most similar to the true ground state. Again,
the advantage that quantum computation provides is in calculating expectation values. Generating ansatz
states is performed classically.

5 Implementing for Hydrogen

We closely follow [4] in simulating the energy of a H2 molecule. The family of ansatze states is based on
Hartree-Fock, assuming that taking superposition of the four lowest-energy Hartree-Fock orbitals is close
enough to the true ground state.

5.1 Reducing the number of qubits

Using Hartree-Fock to find n orbitals with which to solve the electronic structure problem would then require
2n states to describe all possible occupations of those states. 2n qubits would be needed to act on this state.
However, a little chemical knowledge about the molecule can greatly reduce the necessary information. In
the case of H2, four Hartree-Fock orbitals yielding 16 qubits will be reduced to only two.

The occupation states can describe systems with any number of electrons. Typically, we know in advance
the number of electrons in a certain molecule, so we can set the occupation of states without that number of

electrons to |0〉 and not include them. H2 has two electrons and only

(
4

2

)
= 6 states are needed to describe

two-electron states.
Additionally, we know not only the number of electrons but also the number of electrons with each spin.

Ground state H2 has one electron of each spin, allowing us to remove two more states in which both electrons
are in spin orbitals of the same spin. This leaves four possible configurations. Following the paper, we assume
a family of ansatz states of the form cos θ |0100〉+ sin θ |0010〉, a state mostly composed of the ground state
|0〉 ⊗ |1〉 in superposition with a small amount of the singly-excited state |1〉 ⊗ |0〉. This choice of ansatz can
be justified by the coupled-cluster correction to the Hartree-Fock state[6], or by arguments from symmetry
of wavefunctions.
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Results

The circuit shown below generates this family of states, parameterized by the RZθ gate, and then trans-
forms to the right basis to measure the expectation value of some qubit, as described above. This circuit,
diagrammed below, was run on IBM’s 5-qubit open-access computers.

Figure 1: The circuit run on the IBM computers. Here, V0 and V1 are the matrices which take the eigenbasis
of the gate under investigation to the standard basis. Here, Rσ are the matrices e−iθσ generated by the Pauli
matrices.

In order to save computational cost, we calculate only for θ on the range (0, 2), because classical simulation
of the quantum computer to determines that this is where the minima lie. To give an example of the output,
we show tabulated some of the output expectation values:

Quantum Computer Classical Simulation
θ 〈Z0〉 〈Z1〉 〈Z0Z1〉 〈X0X1〉 〈Y0Y1〉 〈Z0〉 〈Z1〉 〈Z0Z1〉 〈X0X1〉 〈Y0Y1〉

0.0 -0.92 0.97 -0.91 0.19 0.15 -1.00 1.00 -1.00 0.01 -0.03
0.2 -0.86 0.93 -0.84 -0.05 -0.13 -0.99 0.97 -1.00 -0.18 -0.21
0.4 -0.83 0.89 -0.86 -0.27 -0.20 -0.93 0.93 -1.00 -0.41 -0.42
0.6 -0.80 0.78 -0.84 -0.25 -0.34 -0.83 0.83 -1.00 -0.59 -0.54
0.8 -0.69 0.13 -0.80 -0.44 -0.47 -0.67 0.71 -1.00 -0.70 -0.75
1.0 -0.55 0.53 -0.78 -0.50 -0.58 -0.55 0.56 -1.00 -0.81 -0.85

The quantum computer has problems properly generating the state. Recall that the ansatz has the
form a(θ) |01〉 + b(θ) |10〉, a eigenstate of the Z0Z1 operator with eigenvalue −1. The measurement of the
expectation value of this operator on the quantum computer is not −1 and the error increases with θ. It is
not clear why higher θ leads to more error.

Nevertheless, remember that

Etotal = g0 + g1〈Z0〉+ g2〈Z1〉+ g3〈Z0Z1〉+ g4〈Y0Y1〉+ g5〈X0X1〉

It follows then that after determining the expectation value for each set of Pauli gates on each ansatz φ(θ),
the energy can be determined at any internuclear distance distance r by multiplying by the coefficients gi(r),
which depend on the two- and four-election interaction orbitals. These are tabulated in [4]. Plotting the
energies as a function of r and θ gives the chart in figure 2.

Finding the minimum at each r gives the potential energy curve for molecular hydrogen in figure 3.
The minimum of this graph, the predicted H2 bond length, is very close to the experimental value of 7.4 Å.
Qualitatively, the shape matches the exact theoretical and accepted experimental result. The vertical shift
of the result of the quantum computer is probably related to the failure of 〈Z0Z1〉 to be exactly −1.
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Figure 2: Energy of various ansatz at different internuclear distances.

Figure 3: Potential energy curve for molecular hydrogen.

6 Conclusion

We have described how to implement the variational quantum eigensolver to solve the central problem of
computational chemistry, finding the ground-state energy of a molecule. This method works even on a
physical, noisy quantum computer. To conclude, we describe some related open areas of research.

6.1 Better computers and phase estimation

The proceeding sections have described a method that works on small, noisy quantum computers, but
requires preparing many ansatz states, and only gives an upper bound on the energy. Phase estimation
requires an error-free quantum computer, but gives the energy exactly. It still requires preparation of an
ansatz, but the only requirement is that the overlap of the ansatz with the true ground state is high.

Mapping the molecular Hamiltonian to the basis proceeds exactly as for the variational eigensolver, as
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does finding some ansatz state. At first, the initial state is

|ψ〉 = (1− ε) |φgs〉+ ε′ |φ′〉

where |φgs〉 is the true ground state and |φ′〉 is the difference between the ansatz and the true ground state.
Now, applying U = einH yields (

(1− ε) e2πinθ |φgs〉+ ε′ |φ′′〉
)

where 2πθ is the ground state energy. As long as ε is small, quantum phase estimation will give θ to any
desired precision with high probability.

As we discussed in class, quantum phase estimation requires access to high powers of controlled U
and a large register of ancilla bits. It is possible to work around these problem for molecular simulation:
Trotterization gives one way to estimate large powers of U . In addition, the phase estimation algorithm
can be run in series one bit at a time, from least significant bit to most, using only one ancilla bit.[5] The
only additional step necessary is a rotation by the phases determined by the previous steps: That is, if two
previous steps have determined that the binary expansion of the phase ends in θn− 1θn, then the third
iteration must rotate the ancilla bit by 2−2θn−1θn before measuring in the |+〉 , |−〉 basis.

Unlike variational methods, where it is possible to run the calculation many times in hope of mitigating
the effect of noise, this algorithm is more sensitive to noise because an error at any iteration will cause
the rest of the calculation to be incorrect. Finding the energy to 2−n precision requires a computer which
reliably do O(n) operations without a single error. For reasonable n this is far beyond the ability of current
computers.

Stability in the presence of noise is the only advantage of the variational eigensolver over methods based on
phase estimation. As quantum computers improve, phase estimation replace variational methods. However,
the variational eigensolver is a useful technique in the noisy, intermediate scale regime of current technology.

6.2 Directions for future work

6.2.1 Optimization

In our implementation we considered only a one-dimensional family of trial states. In this space, it is simple
to scan over every possible ansatz. For higher-dimensional systems this would be unworkable. It’s not clear
how to efficiently optimize in the presence of noise. Gradient descent does not work well here. In addition,
it would be interesting to know if there is a quantum optimization algorithm that could be applied to this
problem.

6.2.2 Mapping the problem onto qubits

Is the Brevyi-Kitaev basis the one which minimizes the number of operations? Is it possible to prove that
O(log n) gates are needed to represent the action of an annihilation or creation operator? Is it possible
to develop mappings that correspond to the hardware of a certain quantum computer, to guarantee that
operations are applied locally on cubits physically connected to each other?

6.2.3 Choosing an ansatz

Is it possible to choose ansatz states such that they can be reliably produced on particular hardware? Are
there faster ways to choose an ansatz that don’t rely on calculating the Hartree-Fock state?
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