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1 Introduction

One of the driving forces behind the field of quantum computing is the prospect of speedups:
some problems that are intractable on classical computers might be solved efficiently on quantum
computers. A significant body of research is devoted to identifying such problems and designing
quantum algorithms for solving them. However, any progress we make towards this goal is of
limited use until we can answer this question: How do we know when we can trust a quantum
computer? In particular, if we are using quantum computers to solve problems that are hard
for classical computers, then how can we determine classically that the quantum computers are
giving us the correct result?

In this paper, we start by explaining some of the concepts that are required in order to for-
malize this question. Then, we give an overview of Mahadev’s 2018 positive result. Finally, we
describe two cutting-edge applications of quantum verification.

2 Background

2.1 Verification

Verification consists of proving that a program or algorithm is correct, i.e. that the output of
the program matches a specification. Classically, a number of tools and techniques have been
developed to aid in verification. Sometimes, verification simply consists of a pen-and-paper proof
that an algorithm will, in theory, produce the correct result. Verification may also check that the
actual result of a computation has a desired property; this form of verification is called post-hoc.

Many classical techniques are of limited use in the realm of quantum computing, due to a num-
ber of factors, including: the computational complexity of the problems that are of interest in
quantum computing, the probabilistic nature of quantum, the difficulties posed by quantum mea-
surement, and the unreliability of the existing quantum hardware. Proving that an algorithm is
correct in theory is not an adequate form of verification, given that the algorithm will likely be
executed on extremely noisy hardware. On the other hand, a post-hoc verification procedure has
to contend with the fact that the result of the computation is a quantum state and cannot easily
become known to a classical verifier, let alone verified.

The central question in quantum verification is whether classically intractable problems must
have classically intractable verification procedures. This question is made more precise in the fol-
lowing sections by the introduction of the concept of interactive proof systems, and the definition
of several complexity classes.

2.2 Self-test

Quantum verification should be distinguished from device-independent quantum self-test, also
known as state tomography. Self-test is concerned with ascertaining which state a device is
outputting, without having knowledge of – or access to – the physical properties of the quantum
device [1]. One application of self-test is determining whether the output state of a quantum
device is entangled. In the device-independent scenario, a quantum device is treated as black box
rather than as a specific laboratory setup in which we might be able to determine or manipulate
the device directly using specific hardware (such as by applying optical or microwave pulses).
Nonetheless, self-test does play an important role in some quantum verification protocols, such
as [2].
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2.3 Soundness and Completeness

The usefulness and trustworthiness of a proof system may be evaluated in a variety of ways.
Ideally, a proof system is both sound and complete. We say that a proof system PS is sound
if, whenever we can construct a proof of a claim C, then C is valid. In other words, if C isn’t
valid, then you can’t use PS to prove C. A proof system PS is complete if every valid claim has a
PS-proof. The evaluation of a proof system PS can be more nuanced. For example, we might be
interested in the probability of a claim’s validity if that claim has a PS proof, the PS-provability
of claims that have certain properties, etc.

2.4 Interactive Proof System

An Interactive Proof System (IPS) models a computation as an interactive protocol in which
there are (usually) two parties – a prover and verifier. IPS can be thought of as a formalization
of the notion that a proof consists of one party convincing another party that they are correct.
When modelling a simple decision problem using an IPS, we can think of the prover as having the
job of deciding YES or NO and of sending the verifier some carefully chosen information called
a witness which constitutes proof of its decision. The verifier then uses the witness to ascertain
if the prover’s decision is correct. An IPS may also involve several rounds of communication
between the verifier and the prover.

Modelling a computation as an IPS is useful because it separates a computation into discrete
parts and thus gives us a formal way of discussing properties of its parts. For instance, the
computational complexity of the prover may differ from that of the verifier. The number of
messages that the prover and verifier use to communicate may also be categorized in terms of
computational complexity. Importantly, we may choose to implement the prover on a quantum
computer, and the verifier on a classical computer. This makes IPS a natural choice of proof
system in quantum computing.

However, it’s not obvious whether every computational problem admits an IPS verification pro-
tocol. Also, remark that any proof system will only be useful to us if it can be implemented
efficiently for the problems that are of interest in quantum computing. Given these restrictions,
it is not obvious prima facie that IPS can serve as general-purpose verification systems in QC.
These concerns are formalized as questions about the relationship between a set of complexity
classes.

2.5 Complexity Classes

2.5.1 BPP

BPP is the class of bounded-error probabilistic polynomial time decision problems that can be
solved in polynomial time by a probabilistic Turing Machine with an error bounded by 1

3 . Note
that P ⊆ BPP .

2.5.2 IP

Interaction Polynomial is the class of problems solvable by an interactive proof system with a
BPP verifier (i.e. a polynomial verifier that has access to a random number generator and
whose error is bounded by 1

3 ) and in which the prover and verifier share a polynomial number of
messages.
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2.5.3 MA

Merlin-Arthur is the same as IP except that the prover and verifier exchange only one message.
In addition, the verifier must accept with probability ≥ 2

3 on a YES instance, and must accept
with probability ≤ 1

3 on a NO instance.

2.5.4 Quantum Complexity

The quantum analogues of the above classes are BQP,QIP , and QMA. QMA is interesting
because P,BQP,NP ⊆ QMA. In addition, the local Hamiltonian problem is QMA-complete
[3], so we may use reductions to the local Hamiltonian problem to solve many other interesting
problems.

2.6 The Question

Using the terms we have just defined, we are now in a position to formalize the question “How
do we know when we can trust a quantum computer?” There are many different approaches but
the formulation that has gained the most traction is this: Does every language in the class BQP
admit an interactive protocol where the prover is in BQP and the verifier is in BPP? 1

3 The Mahadev Paper

In 2018, a UC Berkley PhD student named Urmila Mahadev proposed a mechanism for doing
efficient classical verification of an efficient quantum computation [5]. More precisely, she pro-
posed a protocol for a sound and complete interactive proof system in which the prover is BQP
and the verifier is BPP . It was previously shown [6] that a BPP verifier can verify a BQP
prover if the verifier is given access to a trusted (quantum) measurement device. This is not the
ideal scenario insofar as this requires that the verifier is either not classical, or is classical but has
access to two quantum devices – the prover as well as a measurement device. The central inno-
vation of Mahadev’s approach is that her prover can serve as its own trusted measurement device.

Recall that BQP is concerned with decision problems; some inputs to a given decision prob-
lem are Y ES instances while others are NO instances. We can define a set L such that x ∈ L
whenever x is a Y ES instance. For example, (x1 ∨ x2) ∈ SAT , the language of satisfiability,
since the formula (x1 ∨ x2) is satisfiable and thus is a Y ES instance of SAT . For a language
L ∈ BQP , and instance x, we want an algorithm which determines if x ∈ L. Mahadev’s verifier
performs the following steps:

Verifier Protocol

VP1. Reduce x to a local Hamiltonian Hx

VP2. Request that the prover generate an n-qubit quantum state – this state is akin to a
“witness” and should correspond to the ground state of Hx

VP3. Perform a measurement of the state.

VP4. Using the results of the measurement, check if the state has low energy. If so, then
x ∈ L. If not, then x 6∈ L

1This question was posed in a blog post by Scott Aaronson in 2006 [4], in which he offered a substantial $25.00
prize to whoever could come up with an answer.
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This is a fairly straightforward protocol for an interactive proof system. However, VP3 is actually
quite complicated to perform, since the verifier is classical and thus cannot directly perform
quantum measurements. This step is what Mahadev calls the measurement protocol, and is the
central focus of the paper. I will briefly explain each of these steps in the following section.

3.1 The Protocol

3.1.1 VP1

VP1. Reduce x to a local Hamiltonian Hx

In this step, the verifier reduces the instance x to a local Hamiltonian. We are assured that this
reduction is possible in general because BQP ⊆ QMA, and the local Hamiltonian problem is
QMA-complete [3]. Furthermore, the reduction procedure can be done by a BPP machine.

This reduction is desirable because any problem in BQP can be reduced to a local Hamilto-
nian problem. This allows us to construct a general verification procedure (i.e. one that applies
to all problems in BQP ) by analysing a specific problem.

3.1.2 VP2

VP2. Request that the prover generate an n-qubit quantum state – this state is
akin to “witness” and should correspond to the ground state of Hx

Since the prover is more or less a black box, we are not concerned with how the prover finds
this state – it is enough for us to know that it can find it, since it is a BQP machine, and local
Hamiltonian is in QMA.

3.1.3 VP3

VP3. Perform a measurement of the state.

In the previous step, the verifier asks the prover for a quantum state. This state does not need
to be communicated to the verifier.2 Rather, we ask the prover to measure its own state. By
augmenting this step with a cryptographic protocol called a commitment scheme, the prover
is “committed” to measuring the state that it generated in the previous step. This allows the
verifier to be assured that prover does not modify this choice at a later stage.

After making its choice, the prover sends the verifier some information that we call a com-
mitment. The commitment is computed by the prover by applying a procedure to the chosen
state. The procedure that is used to compute the commitment must have several interesting
properties in order to satisfy our ultimate goal, which is to force the prover to make trustworthy
measurements of its own states. This requirement motivated Mahadev to define two families of
functions, the Extended Trapdoor Claw-Free family and the Trapdoor Injective family. Let F be
such a family, where F : {fk,0 : X → Y, fk,1 : X → Y} and X = {0, 1}w.

2In fact, since the verifier is classical, it is not even possible for it to receive this state. This detail sets Mahadev’s
IPS protocol apart from a conventional IPS, since typically the witness is simply sent to the verifier.
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Verifier Measurement Protocol

VM1. Choose an n-qubit string h = (h1, ..., hn) ∈ {0, 1}n (where the value of the ith coor-
dinate determines whether to make a Hadamard or standard basis measurement on the
ith coordinate of the witness)

VM2. Choose key bits k1, ..., kn and trapdoor bits t1, ..., tn corresponding to the family of
trapdoor functions, and send the keys to the prover. (The ith function should be a
Trapdoor Claw-Free function if hi = 0, and Trapdoor Injective otherwise.)

VM3. Ask prover for a classical commitment y1, ..., yn to the witness

VM4. Choose at random whether to run a test round or a Hadamard round

VM5. Depending on that choice,

(a) If test round was selected, the verifier requests standard basis measurements of the
committed qubit and preimage register for all n qubits.

(b) If Hadamard round was selected, the verifier requests Hadamard basis measurements
of the committed qubit and preimage register for all n qubits.

VM6. Decode the measurement result using the trapdoor and check the result against the
commitment yi. If this check fails for any bit, reject. Otherwise, accept.

Prover Measurement Protocol (Claw-Free Case)

PM1. Receive the keys k = {k1, ..., kn} from the verifier.

PM2. For each single qubit state |ψi〉 = α0 |0〉 + α1 |1〉 and corresponding key bit ki, let
fki,0, fki,1 from the requisite function family. (If h1 = 0, these functions should come
from the claw-free family. Otherwise, they should come from the injective family. For
simplicity, I assume all are the former.)

PM3. Apply fki,0/fki,1 to a uniform superposition of x ∈ X over the input to form the state
1
|X |
∑
x∈X α0 |0〉 |x〉 |fki,0(x)〉+ α1 |1〉 |x〉 |fki,1(x)〉

PM4. Measure the final register to obtain α0 |0〉 |x0,yi〉 |yi〉+ α0 |0〉 |x0,yi〉 |yi〉

PM5. Send the yis to the verifier. This y = {y1, ..., yn} is the commitment string. Remark
that these are classical bits, since they are the result of making a measurement on that
register.

PM6. If the verifier requests a test round, measure and send the verifier the result. Otherwise,
apply a Hadamard gate to both remaining registers and send the verifier the result.

I have included the measurement protocol out of interest; However, the details of this scheme are
beyond the scope of this paper. The main gist of the protocol is that the verifier gains leverage
over the prover by utilizing a function that only she can efficiently invert.

3.1.4 VP4

VP4. Using the results of the measurement, check if the state has low energy. If so,
then x ∈ L. If not, then x 6∈ L
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Recall that we began the protocol by constructing H, and that the committed state ρ is intended
to be a ground state of H. We would like to know its energy and thus to perform Hρ.

Mahadev’s analysis of how a classical verifier can accomplish this feat is taken largely from
[6]. To start, the verifier randomly chooses Hi, one of the local Hamiltonians of H. From [7], we
can assume that H is 2-local and only has X and Z operators, since this model of Hamiltonians
is QMA-complete. Furthermore, applying X and Z operators is equivalent to performing mea-
surement in a chosen basis. From these facts, and since Hi only acts non-trivially on 2 qubits,
the verifier may, in theory, approximate the energy of ρ simply by measuring a couple of its bits.
However, the verifier does not perform these measurements. In fact, these steps were accom-
plished previously, during the measurement phase, when the verifier selected the measurement
basis h = (h1, ..., hn). The product of the resulting bits approximates the energy of Hρ. So,
in this stage, the verifier is merely computing a product, and accepting x (i.e. concluding that
x ∈ L) if the result is sufficiently small.

3.2 Soundness and Completeness

The protocol that Mahadev proposed may appear to be unnecessarily complicated. However, the
details are necessary in order to ensure that it is sound and complete. As explained earlier, a
general proof system is sound if it accepts only inputs that are valid. It is complete if it accepts
all inputs that are valid. This definition fails to capture that probabilistic nature of quantum
systems. We can account for that by rephrasing those criteria using the language of probability
distributions.

Mahadev describes the soundness and completeness criteria as follows: For prover P, basis choice
h = (h1, ..., hn), and an n qubit state ρ, let DP,h be the distribution of measurement results
obtained by the verifier, and Dρ,h the distribution obtained by measuring ρ in basis h. We can
think of DP,h as the output of an algorithm which computes f(ρ) for some function f , and of
Dρ,h as the true value of f(ρ). The protocol is deemed complete if there exists a prover P such
that DP,h is close enough to Dρ,h for all h, and P is accepted by the verifier with negligible error.
The protocol is deemed sound if, whenever the verifier accepts P, there exists a ρ such that DP,h
is close enough to Dρ,h.

The completeness proof of the protocol is quite simple - if the prover is honest, then the output of
the algorithm is as desired. This follows directly from the construction of the protocol. The proof
of soundness, however, takes up many pages of Mahadev’s paper. These proofs demonstrate the
correctness of usefulness of the protocol; without them, the protocol itself has little value.

4 Application: Computing the Order of a Group

4.1 Background

In this section, we present a concrete example of using an interactive proof system in which
a verifier computes the value of a function f using the help of a more powerful and possibly
unreliable prover. The verifier and prover are given an input x and, using the help of the prover,
must output f(x) or null with high probability if the verifier believes the prover is dishonest. We
will first define the notion of computing f with an interactive prove system. This is similar to
definitions presented above.

Definition 1. Given a function f : X −→ {0, 1}∗, we say f has a interactive proof system if given
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verifier V and prover P who are both given an input x ∈ X and are allowed to communicate via
classical polynomial length messages, the verifier outputs y ∈ {0, 1}∗ or null s.t:

1. There exists a prover P s.t. y = f(x) with probability greater than 2
3

2. Given any other prover P’, y = f(x) or null with probability greater than 2
3

Part 1 of this definition is the completeness condition and in this case, the prover is said to
be an honest prover. Part 2 is the soundness condition and the prover is said to be dishonest.
For this example we consider the problem of determining the order of solvable black-box group G
using an interactive prove system created by Gall et al [8]. We assume the reader is familiar with
basic notions in group theory and present some preliminary definitions relevant to the problem.

Definition 2. A black-box representation for a group G is one in which the elements of G are
represented by a n-bit string and whose group operations are performed efficiently by an oracle.

In general we assume the number of bits n required to represent every element of G is
O(log(|G|). Given a black-box group representation of G, determining the order of G has been
shown to be difficult in general on classical computers, even when the group is abelian. In a
quantum system, a black box group has its elements represented by a n-qubit quantum state
|g〉 and there exists oracles U and V s.t U |g〉 |h〉 = |g〉 |gh〉 and V |g〉 =

∣∣g−1〉. Using quantum
computers, the order of a quantum black-box group G can be determined efficiently for groups
which are solvable.

Definition 3. A group G is said to be solvable if there exist a generating sequence {h1, ..hn} ⊂ G
s.t. G = 〈h1, ..., hn〉 and 〈h1, ..., hi−1〉 E 〈h1, ..., hi〉∀i. We refer to the sequence {h1, ...hn} as a
polycyclic generating sequence for G. For the remainder of this paper, we denote Hi = 〈h1, ..., hi〉

Two relevant properties of solvable groups that we will use in this paper are:

1. If h ∈ Hi, then there exist a decomposition h = hj11 ...h
ji
i for some j1, ..., ji ∈ Z

2. |Hi| = |h1|...|hi| = |Hn/Hn−1|...|H1/H0|

Theorem 1. [9] Given a solvable black-box group G, there exists a quantum algorithm that runs
in time poly(log|G|) and outputs |G| with probability 1− 1

poly(|G|)

We omit the outline of the algorithm and focus instead on a interactive proof system to
compute |G| in the case where we may have an unreliable quantum computer with a reliable
classical verifier. To simplify the problem for the sake of example, we also assume that we are
given the prime factors of |G| as a set S = p1, ...pl. (Note this assumption may be omitted in
exchange for a slightly more complicated IPS). We start by presenting algorithms that the honest
quantum prover will need to perform.

Theorem 2. [9] Let G be a black-box solvable group with {h1, ..., ht} a polycyclic generating
sequence of G. Then there exists two quantum algorithms A1 and A2 that run in time poly(log|G|)
s.t:

1. A1 takes inputs integer i < t and h ∈ Hi and outputs the decomposition h = hj11 ...h
ji
i with

probability 1− 1
poly(|G|)

2. A2 takes inputs integer i < t and h ∈ G and decides if h ∈ Hi or not with probability
1− 1

poly(|G|)

In addition, there are a few actions that the classical verifier will need to perform:
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Theorem 3. [10] Let G be a black-box group and ε < 0. There exists a classical algorithm
running in time log(|G|) and log( 1

ε ) that outputs a random element g ∈ G with probability pg
where pg ∈ ( 1

|G| − ε,
1
|G| + ε)

Theorem 4. [8] Let G be a black-box solvable group and S = p1, ...pl be the set of prime factors
of |G|. Then there exists a classical algorithm that runs in poly(log|G|) and outputs elements
h1, ..., ht ∈ G and prime numbers r1, ...rt ∈ S s.t. with probability 1− 1

poly(|G|) we have:

1. {h1, ..., ht} is a polycyclic generating sequence of G

2. |Hi/Hi−1| = 1 or ri

4.2 The IPS protocol

Given the existence of these algorithms, an interactive proof system to compute |G| is outlined
as follows [8]:

1. The verifier uses theorem 4 to generate a polycyclic generating sequence h1, ..., ht ∈ G
and prime numbers r1, ...rt ∈ S.

2. For each i, the verifier randomly chooses si ∈ {0, 1} and a random element xi ∈ Hi−1
using theorem 3 by taking ε = 1

22n where n is the number of qubits used to represent
the elements of G

3. The verifier sends h1, ..., ht and hsii xi for each i to the prover

4. The (honest) prover uses theorem 2 and uses algorithm A1 to compute ai where ai = 0
if hsii xi ∈ Hi−1 and a1 = 1 else. If hsii xi ∈ Hi−1, the prover uses A2 to compute the

decomposition of hi = h
ji,1
1 ...h

ji,i−1

i−1 , else the prover randomly assigns values to {ji,k}.
The prover sends a1, ..., at and {ji,k} to the verifier.

5. For each i, the verifier sets li according to the following rules:

(a) if hi = h
ji,1
1 ...h

ji,i−1

i−1 set li = 1

(b) if hi 6= h
ji,1
1 ...h

ji,i−1

i−1 and ai = si set li = ri

(c) else verifier aborts the algorithm and outputs null

6. If the output is not null from step 5, the verifier outputs |G| =
∏
i li

We first show that this protocol outputs |G| with high probability if the prover is honest in step
4 of the protocol. For each i, we know |Hi/Hi−1| = 1 or ri. First suppose |Hi/Hi−1| = 1, then
hi ∈ Hi−1 and Hi = Hi−1 so regardless of the value of si, h

si
i xi ∈ Hi−1. The honest prover, with

high probability, will then return the correct decomposition hi = h
ji,1
1 ...h

ji,i−1

i−1 and the verifier
will set li = 1 = |Hi/Hi−1| as in rule 5(a).

On the other hand, if |Hi/Hi−1| = ri, then hi 6∈ Hi−1. In this case, if si = 0 (resp. si = 1)
then hsii xi ∈ Hi−1 (resp. hsii xi /∈ Hi−1) and the honest prover, with high probability, will output
ai = si and a random incorrect decomposition since no correct decomposition exists. According
to step 5(b), the verifier will set li = ri = |Hi/Hi−1|. In the last step, the verifier will output∏
i li =

∏
i |Hi/Hi−1| = |G| with a high probability as desired.

Now we analyze the case where we don’t have an honest prover in step 4. The protocol will
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output a value different from |G| or null if and only if the prover convinces the verifier to set
li 6= |Hi/Hi−1| from some i in step 5. If |Hi/Hi−1| = ri, the dishonest prover can not provide a

correct decomposition hi = h
ji,1
1 ...h

ji,i−1

i−1 so the verifier will never incorrectly set li = 1 according
to 5(a). In the case where |Hi/Hi−1| = 1, the verifier will incorrectly li = ri only if the prover
outputs ai = si. This means the dishonest prover must guess correctly if hsii xi ∈ Hi−1. The
probability of guessing correctly is:

pi =
1

2
+

1

2

∑
h∈Hi−1

∣∣∣∣12(Pr[xi = h]− Pr[hixi = h])

∣∣∣∣
=

1

2
+

1

4

∑
h∈Hi−1

∣∣∣∣Pr[xi = h]− 1

|Hi−1|
− Pr[hixi = h] +

1

|Hi−1|

∣∣∣∣
≤ 1

2
+

1

4

∑
h∈Hi−1

∣∣∣∣Pr[xi = h]− 1

|Hi−1|

∣∣∣∣− 1

4

∑
h∈Hi−1

∣∣∣∣Pr[hixi = h]− 1

|Hi−1|

∣∣∣∣
=

1

2
+

1

2

∑
h∈Hi−1

∣∣∣∣Pr[xi = h]− 1

|Hi−1|

∣∣∣∣
≤ 1

2
+

1

2

∑
h∈Hi−1

ε

=
1

2
+

1

2
|Hi−1|ε

≤ 1

2
+

1

2
2n

1

22n

=
1

2
+

1

2n+1

Above the third line used the triangle inequality, the fourth line uses that since hi ∈ Hi−1,
h−1i h ∈ Hi−1 and Pr[hixi = h] = Pr[hi = h−1i h], the two sums are the same. The fifth line uses
theorem 3 and the sixth line uses that n is the encoding length of G.

Thus with probability 1
2 + 1

2n+1 , the prover will guess correctly if ai = si. Recall the verifier
will output a value different from |G| or null only if verifier incorrectly sets li = ri for some i.
The above analysis shows that this has a probability less than 1

2 + 1
2n+1 . The probability that the

verifier will output |G| or null is thus 1
2−

1
2n+1 . By running this algorithm in parallel, m times re-

duces this probability to 1−( 1
2 + 1

2n+1 )m which allows us to reach the threshold of 2
3 in definition 1.

In conclusion, this algorithm provides a interactive proof system in which a reliable classical
verifier may use a possibly unreliable quantum prover to compute the order of a group or detect
a unreliable prover and output null with a high probability.

5 Application: Blind Quantum Computing

We now turn our attention to a more practical application of quantum verification, namely Blind
Quantum Computing. Blind computing is used for doing computation on encrypted data which
could contain sensitive information, such as financial or health records, while preserving personal
privacy and information security. As in the verification procedures described in the previous sec-
tions, this procedure involves two parties. We call the verifier Alice or the user, and the prover
Bob or the server. Alice asks Bob to execute a quantum program and report the measurements
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back to Alice in such a way that Alice can check the validity or ’honesty’ of the quantum com-
putations. In its most basic form, the Alice applies an encryption procedure E to input x. Bob
computes output z which is sent to Alice, who then applies a decryption procedure D(z) to obtain
the desired output [11], [12].

In the quantum domain, we assume that Alice can implement BPP computations but requires
Bob to carry out BQP computations while keeping the input, the output, and the function of
interest (the one acting on the input) hidden from the Bob. The first solution to this was given by
Childs’ Protocol, developed by Andrew Childs, computer scientist and physicist at the University
of Maryland [13].

5.1 Setup

In this protocol, Alice has the ability to perform basic quantum gates, but is unable to implement
arbitrary quantum circuits. This differs from the protocols described in previous sections, in
which the verifiers were purely classical. We assume Alice can generate random classical bits,
store quantum states, prepare only the |0〉 state, perform the SWAP gate (which sends |01〉 to |10〉
and vice-versa), and Pauli Gates (namely X, Z, and their product XZ). However, she may not
perform measurements. Bob, on the other hand, can perform arbitrary quantum measurements
and can do universal quantum computation. Lastly, this protocol allows for bidirectional quantum
communication between Alice and Bob.

5.2 Idea

The protocol uses a quantum version of the classical Vernam cipher, also known as a one-time
pad. In the classical setting, Alice wishes to send a bit b to Charlie and both share a bit k, known
as the private key. Alice sends the message m = b

⊕
k (where

⊕
represents addition mod 2).

Then Charlie uses k to decrypt m and recover b. In a private quantum channel on the other
hand, we still use a classical key k, but the bit b we wish to send now becomes a quantum state
|Ψ〉. Since each qubit is characterized by two numbers, the key is now comprised of two classical
bits, k and j. In this scenario, Alice applies ZkXj to |Ψ〉. If a third-party intercepts this, they
won’t be able to decipher the original qubit without knowledge of j and k. Presuming they chose
to leave the qubit alone, Charlie can then decode the qubit by applying XjZk to reverse the
operations and recover |Ψ〉.

5.3 Implementation

The implementation of Childs’ protocol requires two main steps:

Problem 1: How can Bob help Alice measure states in the computational basis?

Alice chooses random bits j and k and applies the unitary ZkXj to her state. Once Bob re-
ceives the qubit, measures it, and reports the result back to Alice, she can recover the original
state by simply flipping the qubit if j = 1 and do nothing otherwise (since applying Z will not
change the measurement outcomes). This process is depicted in the circuit below where the dou-
ble lines represent the shared, random classical bits and a dashed box around a gate represents
the result of an ’honest’ computation, or measurement by Bob.
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Figure 1: Secure-assisted computational basis measurement

Problem 2: How can Bob help her extend her initial gate set to perform universal quantum
computations?

The protocol provides circuits for implementing the Hadamard, CNOT, and π
8 (or T ) gates,

which constitute a universal gate set.

(I) For the Hadamard gate depicted below, Alice applies ZkXj to her qubit. Provided Bob is
honest and performs the Hadamard gate, Alice can recover the original qubit with just the H gate
applied to it by reversingX by Z and Z byX. This follows from the fact thatXHZ = ZHX = H.

Figure 2: Implementation of the Hadamard gate

(II) For the CNOT gate shown below, Alice requires four random (classical) bits j, k, l, and m
since CNOT requires two qubits to function. She applies ZkXj to the first qubit and ZmX l

to the second qubit. Provided Bob is honest and performs the CNOT gate faithfully, Alice can
decode the returned qubits based on what here initial classical bits were.

Figure 3: Implementation of the CNOT Gate

(III) For the π
8 gate reproduced below, Alice needs a two-round protocol, unlike the above two

(this arises from the fact that X does not commute with T ). Starting again with four random
(classical bits) j, k, l, and m, Alice randomizes her state by applying ZkXj . If Bob performs the
T gate honestly and returns the result to Alice, she can apply XjZk to the output. Z commutes
with T (ZT = TZ) but for X we have that XTX = T ∗ which differs from T by T 2 (since T is
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unitary T ∗TT = IT = T ). Now Alice will send this state back to Bob for calculation and this
time, since T 2 = Z, Alice can reverse the randomization without any issue to recover the T gate
calculation.

Figure 4: Implementation of the T Gate

5.4 Challenges

Although the protocol is effective at preventing Bob from obtaining information from Alice, it
has a few weak spots that merit further discussion. For one thing, it does not prevent Bob from
refusing to carry out Alice’s computation or from Bob returning an erroneous calculation. These
weaknesses are innate to the private quantum channel, but there are some partial solutions. In
the case of NP problems, Alice has a way of keeping Bob honest by simply checking if the given
output satisfies the initial problem (i.e., testing the output of two integers using Shor’s Algorithm
to see if they are indeed factors of the input number). However, if the problem is not in the NP
complexity class, it may be difficult or impossible for Alice to verify Bob’s output. In this case,
assuming Bob is a memoryless black box, Alice could bound the probability Bob is cheating by
feeding randomized subsets of the input and performing tests on the outputs. A final and more
practical problem inherent in Childs’ protocol is the use of a quantum channel to send an unre-
stricted number of quantum states back and forth at will. In a practical setting, such a channel
may be too slow or expensive and thus we would require a more limited transfer of quantum states.

Overall, Childs’ protocol provides an interesting and practical application of quantum verifi-
cation for guaranteeing both the validity of quantum computations, while preserving the privacy
and personal information of the user Alice.

6 Conclusion

In conclusion, we have explored the problem of quantum verification, culminating in an analysis
of the Mahadev’s 2018 paper, which proposes a sound and complete interactive proof system
for doing efficient classical verification of an efficient quantum computation. The ability to tell
whether a quantum computer is ‘honest’ has many important theoretical and practical applica-
tions, as shown in both Childs’ protocol for blind quantum computation and in computing the
order of a group. Quantum verification will no doubt play an important role in the future of
computing.
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