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Abstract

A decade ago, Ben Reichardt showed that the general adversary bound of a function characterizes
its quantum query complexity, a result which spanned several papers and drew inspiration from several
more. This survey seeks to aggregate the background and definitions necessary to understand the proof.
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Notable among these are the lower bound proof and the definition of span programs, witness size, and
semi-definite programs. These definitions, in addition to examples and a detailed exposition, serve to
give the reader a better intuition of the graph-theoretic nature of the upper bound. We also include an
applications of this result to lower bounds on DeMorgan formula size.

1 Introduction

Given a function f , the quantum query complexity of f , denoted Q(f) is the number of quantum oracle
queries necessary to evaluate f . It is typically used as a lower bound on the complexity of a quantum
algorithm as the amount of computation allowed between queries is unbounded. The polynomial method
[Bea+01] and the adversary bound method [Amb02; BSS03] are the primary techniques used to show lower
bounds on quantum query complexity. However, these techniques are currently incomparable. On the n-
input collision problem, the adversary method only achieves an O(1) while the polynomial method achieves
the optimal Θ(n1/3) bound. On Ambainis’ total function fk on 4k bits, the polynomial method achieves at
most a 2k lower bound which is strictly weaker than the adversarial bound of 2.5k [Amb06].

The adversary bound was originally proposed by Ambainis [Amb02]. Given a boolean function f , the
adversary bound of f , denoted Adv(f), captures the intuition that, in order to compute f , one must be able
to distinguish between any two inputs w and x where f(w) 6= f(x). Specifically, if |φw〉 and |φx〉 are the
final state of a quantum query algorithm after running with inputs w and x respectively, then |φw〉 and |φx〉
must be far apart in our measurement basis if f(w) 6= f(x). There are several equivalent formulations of the
bound. This survey uses the spectral norm formulation of Barnum, Saks, and Szegedy [BSS03].

Definition 1.1. An adversary matrix for f : {0, 1}n → {0, 1} is a 2n-by-2n Hermitian matrix Γ where
〈x|Γ|y〉 = 0 whenever f(x) = f(y).

Definition 1.2. The matrix Di is the 2n-by-2n matrix where 〈x|Di|y〉 = 0 if xi = yi and 〈x|Di|y〉 = 1 if
xi 6= yi.

Definition 1.3. The adversary bound on a function f : {0, 1}n → {0, 1} is

Adv(f) = max
Γ≥0
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

where Γ is an adversary matrix for f .

Theorem 1.4 ([BSS03]). Adv(f) = Ω(Q2(f)).

Furthermore, Laplante, Lee, and Szegedy show that the adversary bound of a function is a lower bound on
the square root of the function’s De Morgan formula size.

Theorem 1.5 ([LLS06]). Adv(f) ≤
√
Lf

Høyer, Lee, and Špalek [HLS07] removed the non-negativity requirement from the adversary bound and
showed that it remained a lower bound on quantum query complexity and formula size. In fact this gen-
eralization only strengthened the lower bound – indeed, it is a tight bound on quantum query complexity,
although this was not shown until later by Reichardt [Rei11].

Definition 1.6. The general adversary bound on a function f : {0, 1}n → {0, 1} is

Adv±(f) = max
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

where Γ is an adversary matrix for f .
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Unlike the matching lower bound, which has a relatively simple proof, this upper bound is proved using
deceptively simple algorithms with complicated analyses. Key to this analysis is the span program model of
computation [KW93]. Reichardt’s main result is the following:

Theorem 1.7. (General Adversary Bound Characterize Quantum Query Complexity.) For any n-ary
boolean function f ,

Q(f) = Θ(Adv±(f)).

Reichardt’s result also been used more recently in entirely classical settings. From the work of Ambainis et.
al [Amb+10], any function with de Morgan formula size ` has a quantum query algorithm which makes at
most O(

√
`) queries. In combination with the polynomial method, this implies the existence of a polynomial

p with degree O(
√
`) such that p(x) approximates f up to a constant factor. More recently, Tal used the

result to show a Ω̃(n2) lower bound for the bipartite formula size of the Inner-Product function [Tal17].

2 Preliminaries

Let f be an n-ary boolean function. Then F0 = f−1(0) and F1 = f−1(1) are sets of strings which evaluate
to 0 and 1 on f respectively.

We assume basic familiarity with quantum computation and bra-ket notation. Given a vector |v〉, let ‖|v〉‖
represent the `2-norm of |v〉. Given a matrix M , let ‖M‖ represent the spectral norm of the matrix, defined
as max|u〉 ‖M |u〉‖ where the maximum is over unit vectors |u〉. In this survey, we use the fact that ‖M‖ is
the largest singular value of M . Furthermore, let ‖M‖Tr = maxB |〈M,B〉|/ ‖B‖, where the maximization is
over complex matrices with the same dimensions as M .

We say that a matrix A ∈ L(U, V ) if A is a linear transformation from vectors in CU to vectors in CV . In
this case A has |U | columns and |V | rows. Let L(U) = L(U,U). Ik is the k × k identity matrix. When the
dimensions are clear from context, we omit the subscript. For u ∈ U and v ∈ V , we will use |u〉 and |v〉 to
denote the indicator vectors for the relevant column and row of A respectively. In particular, 〈v|A|u〉 is the
entry of A in row v and column u.

Readers will also require some familiarity with positive semi-definite matrix (PSD) and semi-definite pro-
grams (SDP). If X is PSD, we write X � 0. When we write X � Y , we mean that X − Y � 0.

3 The General Adversary Bound

In which we show the following properties of the general adversary bound.

Theorem 3.1 ([HLS07]). Adv±(f) = Ω(Q2(f)).

Theorem 3.2 ([HLS07]). Adv±(f) ≤
√
Lf

The corresponding upper bound, Adv±(f) = O(Q2(f)), will be left to a later section.

3.1 Adv± is a Lower Bound for Quantum Query Complexity

Consider a quantum query algorithm that computes f in T steps with error at most 1/3. Without loss of
generality, the quantum query algorithm is of the form UTVINDUT−1VIND . . . U1VINDU0 where each Ut is a
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unitary that does not depend on the input x and VIND is the standard phase oracle unitary on the index
function IND:

VIND|i〉 = (−1)xi |i〉

It will be helpful to divide the state of this quantum query algorithm into three sets of qubits: (1) the input
set I holds the input x and remains unchanged throughout the execution of the algorithm, (2) the query set
Q that is used by each VIND to specify a coordinate of x, and (3) a workspace set W that can be acted upon
arbitrarily. The qubits in Q and W are measured at the end of the algorithm to obtain an output in {0, 1}.
These measurements can be viewed as orthogonal projectors Π0,Π1. Let the combined state of Q and W on

input x at step t be |ψtx〉. Then the probability that we will measure outcome b on input x is
∥∥Πb|ψTx 〉

∥∥2
.

Note that for all x we have
∥∥Πf(x)|ψTx 〉

∥∥2 ≥ 2/3. Three other important properties of the projectors are that
Π0 + Π1 = I (the projectors are complete), Π2

b = Πb (performing a projection twice has no more effect than
applying it once), and Π0Π1 = Π1Π0 = 0 (the projections are orthogonal).

The main observation that Høyer, Lee, and Špalek [HLS07] use in their proof of Theorem 3.1 is that the
combined state of Q and W must be very different when the algorithm is run on x compared to when it is
run on y if f(x) 6= f(y): otherwise, any measurement would be unable to distinguish these states with high
enough fidelity. We present their argument here.

Proof of Theorem 3.1. Let Γ be an adversary matrix. Note that ‖Γ‖ is the largest absolute value of any
eigenvalue of Γ, as Γ is Hermitian. Assume that ‖Γ‖ = λ1 where λ1 is the largest eigenvalue of Γ: this can
be done without loss of generality by replacing Γ with (−1)Γ, which does not affect the value of ‖Γ‖. Let
|D〉 be the unit eigenvector corresponding to λ1.

Consider running our quantum query algorithm for f with an input in a superposition defined by |δ〉:
the state of the input qubits will be

∑
x∈{0,1}n〈x|δ〉|x〉. Then the state of Q and W at step t will be∑

x∈{0,1}n〈x|δ〉|ψtx〉. Let W(t) be the 2n-by-2n density matrix defined by 〈x|W(t)|y〉 = 〈x|δ〉〈δ|y〉〈ψty|ψtx〉. We

measure the progress of the algorithm by comparing W(t) to Γ. Define the progress measure M(t) = 〈Γ,W(t)〉.
To prove the lower bound, it suffices to show that this progress measure changes by an amount bounded
above by 2 maxi ‖Γ ◦Di‖ at each step of the algorithm, but must change by at least a constant multiple of
‖Γ‖ over the course of the entire algorithm. The following three claims show this.

Claim 3.3. M(0) = ‖Γ‖

Proof. Before any executions of the phase oracle, the state cannot depend on the input: for all x and y,
|ψ0
x〉 = |ψ0

y〉, and so W(0) = |δ〉〈δ|. Then M(0) = 〈Γ, |δ〉〈δ|〉 = Tr(Γ∗|δ〉〈δ|) = Tr(λ1|δ〉〈δ|) = λ1 · 1 = ‖Γ‖.

Claim 3.4. M(T ) ≤ ( 2
3

√
2) ‖Γ‖

Proof. First note that Γ = Γ ◦ F where F is the 0/1 adversary matrix:

〈x|F |y〉 =

{
0 f(x) = f(y)

1 f(x) 6= f(y)

Thus M(T ) = 〈Γ ◦ F,W(T )〉 = 〈Γ, F ◦ W(T )〉. By the definition of the trace norm, this gives us M(T ) ≤
‖Γ‖

∥∥F ◦W(T )
∥∥

Tr
. To prove the claim we simply need to upper-bound

∥∥F ◦W(T )
∥∥

Tr
.

LetX0 (respectivelyX1) be the 2n×2n matrix where the xth row is Πf(x)δx|ψTx 〉 (respectively Π1−f(x)δx|ψTx 〉).
Think of X0 as the projection onto correct answers and X1 as the projection onto incorrect answers.

First, we observe that F ◦W(T ) = X0X
∗
1 +X1X

∗
0 :

〈x|(X0X
∗
1 +X1X

∗
0 )|y〉 = 〈x|δ〉〈δ|y〉

(
〈ψTy |Π1−f(y)Πf(x)|ψTx 〉+ 〈ψTy |Π1−f(x)Πf(y)|ψTx 〉

)
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If f(x) = f(y), then the expression on the right is 0, as Π0Π1 = 0. Otherwise, ΠbΠb = Πb and Π0 + Π1 = I,
so the expression on the right is 〈x|δ〉〈δ|y〉〈ψTy |ψTx 〉 = 〈x|W(T )|y〉.

We now need to upper-bound ‖X0X
∗
1 +X1X

∗
0‖Tr.

‖X0X
∗
1 +X1X

∗
0‖Tr ≤ ‖X0X

∗
1‖Tr + ‖X1X

∗
0‖Tr by the triangle inequality

≤ 2 ‖X0‖F ‖X1‖F by Hölder’s Inequality

We upper-bound this final expression by noting the following two facts:

‖X0‖2F + ‖X1‖2F =
∑

x∈{0,1}n
|〈x|δ〉|2

(∥∥Πf(x)|ψTx 〉
∥∥2

+
∥∥I−Πf(x)|ψTx 〉

∥∥2
)

= ‖δ‖2 = 1

‖X0‖2F =
∑

x∈{0,1}n
|〈x|δ〉|2

∥∥Πf(x)|ψTx 〉
∥∥2 ≥ 2

3
‖δ‖2 =

2

3

Therefore, 2 ‖X0‖F ‖X1‖F is maximized at 2
√

2/3
√

1/3 = 2
3

√
2.

From the first two claims, we know that M(0) −M(T ) ≥ (1− 2
3

√
2) ‖Γ‖. The last step in the proof is to give

an upper bound on M(t) −M(t+1) for all t.

Claim 3.5. M(t) −M(t+1) ≤ 2 maxi ‖Γ ◦Di‖

Proof. To help us prove this claim, we will define a new density matrix W
(t)
? that is similar to W(t). Whereas

W(t) is indexed by the basis states of the input qubits I and has entries defined by the state of the query

qubits Q and the workspace qubits W , W
(t)
? will be indexed by I and Q and have entries defined by the state

of W .
〈x, i|W(t)

? |y, j〉 = 〈x|δ〉〈δ|y〉〈ψty|j〉〈i|ψtx〉
Here, i and j are basis states of Q.

Let G and D be the following block-diagonal (n · 2n)-by-(n · 2n) matrices:

G = Γ⊗ In =

n⊕
i=1

Γ D =

n⊕
i=1

Di

Note that M(t) = 〈Γ,W(t)〉 = 〈G,W(t)
? 〉. We proceed with the proof. First observe that because the unitary

Ut+1 does not depend on the input qubits, we can ignore it for the purposes of our progress measure:
〈ψty|U∗t+1Ut+1|ψtx〉 = 〈ψty|ψtx〉, and so W(t) does not change after the application of the unitary. This means

that M(t+1) = 〈G,W(t+1)
? 〉 = 〈G,VINDW(t)

? V ∗IND〉.

M(t) −M(t+1) = 〈G,W(t)
? 〉 − 〈G,VINDW(t)

? V ∗IND〉 = 〈G,W(t)
? − VINDW(t)

? V ∗IND〉 = 〈G, (W(t)
? − VINDW(t)

? V ∗IND) ◦D〉

This last equality is true because 〈x, i|(W(t)
? − VINDW(t)

? V ∗IND)|y, i〉 = (1 − (−1)xi+yi)〈x, i|W(t)
? |y, i〉 (which is

0 when xi = yi) and G is block-diagonal (〈x, i|G|y, j〉 = 0 if i 6= j).

M(t) −M(t+1) = 〈G, (W(t)
? − VINDW(t)

? V ∗IND) ◦D〉

= 〈G ◦D, (W(t)
? − VINDW(t)

? V ∗IND)〉

≤ ‖G ◦D‖ ·
∥∥∥W(t)

? − VINDW(t)
? V ∗IND

∥∥∥
Tr

(by the definition of the trace norm)

≤ ‖G ◦D‖ ·
(∥∥∥W(t)

?

∥∥∥
Tr

+
∥∥∥VINDW(t)

? V ∗IND

∥∥∥
Tr

)
(by the triangle inequality)

= 2 ‖G ◦D‖
∥∥∥W(t)

?

∥∥∥ (VIND is unitary)

= 2 ‖G ◦D‖ (W
(t)
? is a density matrix)

= 2 max
i
‖Γ ◦Di‖
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In the above we used the following facts: the trace norm is invariant under conjugation with a unitary, the
trace norm of a density matrix is 0, and the spectral norm of a block-diagonal matrix is the maximum of
the spectral norms of the blocks.

Putting it all together, we have that a quantum query algorithm for f requires at least
1− 2

3

√
2

2 Adv±f =

Ω(Adv±f) rounds.

3.2 Adv± is a Lower Bound for the Square Root of Formula Size

The lower bound on
√
L(f) using Adv±(f) makes use of the Karchmer-Wigderson game on f .

Definition 3.6 ([KW90]). Given a Boolean function f , the Karchmer-Wigderson game on f (KW(f)) is
a two-player communication game in which one party receives an input x ∈ f−1(0), one party receives an
input y ∈ f−1(1), and the parties must collectively determine some coordinate i on which xi 6= yi.

A useful fact is that the minimum number of leaves in a De Morgan formula that computes a function f
– denoted L(f) – is exactly the minimum number of leaves in a communication protocol that successfully
solves KW(f) – denoted CP (KW(f)).

Theorem 3.7 ([KW90]). L(f) = CP (KW(f))

We give a brief sketch of the proof.

Proof (Sketch). Given a formula for f , we can use induction on the depth of the formula to produce a
communication protocol for KW(f). If the formula is a single leaf, then no communication is required (and
so the protocol is also a single leaf). If the formula is the logical And of two subformulae, then y must
evaluate to 1 on both subformulae but x must evaluate to 0 on at least one, so the player holding x can
report which. The parties continue with the protocol for that subformula, so the number of leaves in the
communication protocol is (by induction) the sum of the number of leaves in the subformulae, which is just
the number of leaves in the entire formula. A similar situation holds when the formula is the logical Or of
two subformulae, but with the player holding y speaking.

A communication protocol for KW(f) can be used to construct a formula for f in an analogous fashion.

A communication protocol for KW(f) partitions f−1(0)× f−1(1) into CP (KW(f)) combinatorial rectangles,
where each rectangle is monochromatic in terms of KW(f): that is, each rectangle is associated with some
i where xi 6= yi for all (x, y) in the rectangle. Let CD(KW(f)) be the minimum number of monochromatic
combinatorial rectangles required to partition f−1(0)× f−1(1). Clearly, CD(KW(f)) ≤ CP (KW(f)).

In order to prove Theorem 3.2, we will exploit two properties of the spectral norm. The first is that the
spectral norm (indeed, any matrix norm) is monotone with respect to submatrices: if A is a submatrix of
B, then ‖A‖ ≤ ‖B‖. The second is that the square of the spectral norm is subadditive over rectangles. For
a |X| × |Y | matrix A and a combinatorial rectangle in X × Y , let AR be defined by:

〈x|AR|y〉 =

{
〈x|A|y〉 (x, y) ∈ R
0 otherwise

Lemma 3.8 ([LLS06]). If A is an |X| × |Y | matrix and R partitions X × Y into combinatorial rectangles,

then ‖A‖2 ≤
∑
R∈R ‖AR‖

2
.
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Proof. Note that ‖A‖ = maxu,v |〈u|A|v〉|/ ‖|u〉‖ ‖|v〉‖. In the following, let |u〉 and |v〉 be the unit vectors
that achieve the maximum in this expression.

For any R ∈ R where R = XR × YR for XR ⊆ X,YR ⊆ Y , define |uR〉 and |vR〉 as follows:

〈uR|x〉 =

{
〈u|x〉 x ∈ XR

0 otherwise
〈vR|y〉 =

{
〈v|y〉 y ∈ YR
0 otherwise

‖A‖ = |〈u|A|v〉| =

∣∣∣∣∣〈u|
(∑
R∈R

AR

)
|v〉

∣∣∣∣∣ =

∣∣∣∣∣∑
R∈R
〈u|AR|v〉

∣∣∣∣∣ =

∣∣∣∣∣∑
R∈R
〈uR|AR|vR〉

∣∣∣∣∣
≤
∑
R∈R
|〈uR|AR|vR〉| ≤

∑
R∈R
‖AR‖ ||uR〉|||vR〉|

≤

(∑
R∈R
‖AR‖2

)1/2(∑
R∈R
||uR〉|2||vR〉|2

)1/2

(by the Cauchy-Schwarz inequality)

Note that the second term here simplifies:∑
R∈R
||uR〉|2||vR〉|2 =

∑
R∈R

∑
(x,y)∈R

(〈u|x〉)2(〈v|y〉)2

= ||u〉|2||v〉|2 (as R partitions X × Y )

To conclude, note that as |u〉 and |v〉 are unit vectors, ||u〉|2||v〉|2 = 1: therefore, ‖A‖ ≤
(∑

R∈R ‖AR‖
2
)1/2

and so ‖A‖2 ≤
∑
R∈R ‖AR‖

2
.

Now we can prove Theorem 3.2.

Proof of Theorem 3.2. Let A be any f−1(0) × f−1(1) matrix. Let Rf be an optimal rectangle partition in
terms of KW(f).

‖A‖2 ≤
∑
R∈Rf

‖AR‖2 ≤ CD(KW(f)) · max
R∈Rf

‖AR‖2

Let Ai be the f−1(0)× f−1(1) matrix defined by:

〈x|Ai|y〉 =

{
〈x|A|y〉 xi 6= yi

0 otherwise

Then AR is a submatrix of Ai, so by the monotonicity with respect to rectangles:

CD(KW(f)) · max
R∈Rf

‖AR‖2 ≤ CD(KW(f)) ·max
i∈[n]
‖Ai‖2

Rearranging, we get:

L(f) ≥ CD(KW(f)) ≥ max
A 6=0

‖A‖2

maxi ‖Ai‖2

We conclude by taking the square root of the above expression and noting that for any matrix A ∈ f−1(0)×

f−1(1), letting A′ be the matrix of the form A′ =

[
0 A
A∗ 0

]
, we have that A′ is an adversary matrix for f

and ‖A′‖ = ‖A‖, so maximizing over matrices A on the right-hand side is equivalent to maximizing over
adversary matrices A′.
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4 Span Programs

Given a function f , we will define a span program and a variant known as the canonical span program for
f . Using SDP duality, we show that a complexity measure of the canonical span program, known as the
witness size, is equivalent to the general adversary bound of f .

Definition 4.1. (Span Programs, [KW93].) A span program Pf for a n-ary boolean function f consists of a
matrix A ∈ L(CI ,C[m]) and a target vector |t〉 ∈ C[m], where I is the disjoint union of 2n index sets I1,0, I1,1,
..., In,0, In,1 one for each setting of each entry of a boolean string s ∈ {0, 1}n. Given s, Π(s) ∈ L({0, 1}I)
is the diagonal matrix whose diagonal entry (j, b)× (j, b) indicates sj = b i.e.

Π(s) = I−
∑
j∈[n]

|j, sj〉〈j, sj |. (1)

The span program Pf evaluates to false if there exists a negative witness |y〉 ∈ C[m] i.e. 〈y|AΠ(s) = 0 but
〈y|t〉 > 0; without loss of generality assume that 〈y|t〉 = 1 by scaling. Conversely, Pf evaluates to true if
there exists a positive witness |z〉 ∈ CI i.e. |t〉 is in the span of AΠ(s) and AΠ(s)|z〉 = |t〉.

For inputs which evaluate to true on Pf , i.e. x ∈ F1 for which there exists |z〉 such that AΠ(x)|z〉 = |t〉, let

wsize(Pf , x) = ‖|z〉‖2. For inputs which evaluate to false on Pf , i.e. w ∈ F0 for which there exists |y〉 such

that 〈y|AΠ(w) = 0 and 〈y|t〉 = 1, let wsize(Pf , w) = ‖〈y|A‖2.1 The witness size of Pf is then

wsize(Pf ) = max
s∈{0,1}n

wsize(Pf , s).

Example 4.2. In the following we consider the span programs for several simple functions. Note that there
can be many different span programs for the same function. All omitted column index sets are assumed to
be empty.

1. For the n-ary logical or function, ORn, let |t〉 = [1] and

A =
I1,1 I2,1 · · · In−1,1 In,1

[ ]1 1 · · · 1 1 .

Observe that wsize(PORn) = maxs∈{0,1}n wsize(PORn , s) = n2 is achieved by the input string s =

[0, ...0]> with the witness |y〉 = [1].

2. For the parity function ⊕2, let |t〉 = [1, 1]> and

A =

I1,0 I1,1 I2,0 I2,1[ ]
1 0 1 0
0 1 0 1

.

Observe that wsize(P⊕2
) = 2. This can be achieved by a string which evaluates to false e.g. w = 00 with

witness |y〉 = [0, 1]> and wsize(P⊕2 , w) = ‖|y〉A‖2 or by a string which evaluates to true e.g. x = 01

with witness |z〉 = [1, 1]> and wsize(P⊕2 , w) = ‖|z〉‖2.

4.1 Canonical Span Programs

In order to relate the complexity of the span program of a given function f to its query complexity, we put
it in canonical span program form. Every span program can be transformed into a canonical span program
with at most a polynomial blow-up in size [KW93].

1Note that this value is equivalent to ‖〈z|A(I−Π(w))‖ by the first condition.
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Definition 4.3. (Canonical Span Program.) The input matrix A and target vector |t〉 of the canonical span
program will be as follows. Define |t〉 ∈ CF0 to be a scalar multiple of the all ones vector. Let A ∈ L(CI ,CF0)
where I = [n]×{0, 1}×[m] for a yet-to-be-determined m. Each row of A corresponds to an input w evaluating
to zero on f . Divide this row further into 2n row vectors of length m one for each setting of each entry in
the input. In the following, if wj = b, then denote each length-m vector corresponding to Ij,b(w) by |v′w,j〉
and corresponding to Ij,b by |vw,j〉.

Define |v′w,j〉 to be the all zeroes vector for all w ∈ F0 and j ∈ [m]. Observe that |t〉 cannot be in the span
of AΠ(w) since the row of AΠ(w) corresponding to w consists entirely of zeros. Further, since the indicator
vector |w〉 ∈ CF0 for w is a witness for A,2

wsize(Pf , w) = ‖〈w|A‖2 =
∑
j∈[n]

‖|vw,j〉‖2 .

Each x ∈ F1 will be assign an input vector of length mn. These will not appear in A, but will be used to
ensure that the vectors |vw,j〉 in A satisfy certain constraints. Each vector will be divided into n length m
vectors corresponding to the n entries of x. These will be denoted by |vx,j〉. Since |t〉 needs to be in the span
of AΠ(x), we require that for all w ∈ F0,

∑
wj 6=xj 〈vw,j |vx,j〉 = 1. Observe that the witness size is again of

the form

wsize(Pf , x) =
∑
j∈[n]

‖|vx,j〉‖2 .

The smallest m for which there exists such vectors |vw,j〉 and |vx,j〉 will suffice.

In the following let W be the witness size of the canonical span program.

Example 4.4. The canonical span program for ⊕2 is as follows. Let the target vector be |t〉 = c[1, 1]> where
c = 1/(3

√
W ). Then for {w1 = 00, w2 = 11} = F0 with vector 〈vwi,j | ∈ C[m] corresponding to the length m

vector of the jth bit of wi, we have

A =

I1,0 I1,1 I2,0 I2,1[ ]
0 〈vw1,1| 0 〈vw1,2| w1 = 00

〈vw2,1| 0 〈vw2,2| 0 w2 = 11

Further, to each string xi in {x1 = 10, x2 = 01} = F1 we assign a vector |xi〉 = [|vxi,1〉, |vxi,2〉]> where
|vxi,j〉 ∈ C[m] corresponds to the length m vector of the jth bit of xi. Note that m = 1 suffices, since the
matrix A where

A =

I1,0 I1,1 I2,0 I2,1[ ]
0 1 0 1 w(1) = 00
1 0 1 0 w(2) = 11

and the pair of vectors |x1〉 = |x2〉 = [1, 1]> satisfies the condition
∑
wj 6=xj 〈vw,j |vx,j〉 = 1.

4.2 The Dual of Adv± is Span Program Witness Size

From the canonical span program above we write the witness size as the following optimization problem:

wsize(Pf ) = min
{|vx,j〉}

max
s∈{0,1}n,j∈[n]

‖|vs,j〉‖2

2Since 〈w|t〉 = 1 while 〈w|AΠ(w) = 0.
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subject to the constraint that for all pairs (w, x) ∈ F0 × F1,
∑
wj 6=xj 〈vw,j |vx,j〉 = 1. Let X be a positive

semi-definite (PSD) matrix such that entry 〈w, i|X|x, j〉 = 〈vw,i|vx,j〉 for all w ∈ F0 and x ∈ F1. Write
wsize(Pf ) as the following equivalent semi-definite program (SDP)

wsize(Pf ) = min
X�0

max
s∈{0,1}n

∑
j∈[n]

〈s, j|X|s, j〉

subject to the constraint that for all (x,w) ∈ F0 × F1,
∑
wj 6=xj 〈w, j|X|x, j〉 = 1.

We will turn the above SDP into the general adversarial bound. First introduce a variable ξ in order to
eliminate the inner maximization function. For adversary matrix Γ let Γj = Γ ◦Dj .

wsize(Pf ) = min
X�0, ξ≥0,

∀(w,x)∈F0×F1:
∑
wj 6=xj

〈w,j|X|x,j〉=1,

∀s∈{0,1}n:ξ≥
∑
j∈[n] 〈s,j|X|s,j〉

ξ (2)

= max
{αw,x},

βs≥0,
∑
s βs=1,∑

s βs|s〉〈s|�
∑
w,x∈F0×F1,wj 6=xj

αw,x|w〉〈x|

∑
αw,x (SDP duality; see Appendix A)

(3)

= max
{αw,x},

βs≥0,
∑
s βs=1,∑

s∈{0,1}n |s
′〉〈s′|�

∑
w,x∈F0×F1,wj 6=xj

αw,x√
βwβx

|w′〉〈x′|

∑
αw,x

(
substitute |s′〉 =

1√
βs
|s〉
)

(4)

= max
{α′w,x},

βs≥0,
∑
s βs=1,∑

s∈{0,1}n |s
′〉〈s′|�

∑
w,x∈F0×F1,wj 6=xj

α′w,x|w
′〉〈x′|

α′w,x
√
βwβx

(
substitute α′w,x = αw,x/

√
βwβx

)

(5)

= max
Γw,x=α′w,x,

|β〉s=
√
βs, ‖|β〉‖=1,

I−Γi�0

〈β|Γ|β〉 (〈w|Γj |x〉 = 0 if wj = xj)

(6)

= max
Γw,x=α′w,x,

‖Γi‖≤1

‖Γ‖ = Adv±(f) (7)

4.3 Span Programs as Graphs

The canonical span program matrix A of f can be transformed into the biadjacency matrices of two
bipartite graphs. These graphs capture the evaluation of a string s on f [Rei10; Rei11; RS12]. Let
BG(s) ∈ C(F0∪I′)×({µ0}∪I) and BG′(s) ∈ C(F0∪I′)×I be the true and false biadjacency matrices corresponding
to the bipartite graph G of the span program respectively. In particular,

BG(s) =

µ0 I[ ]
|t〉 A F0

0 Π(s) I ′
BG′(s) =

I[ ]
A F0

Π(s) I ′
(8)

where |t〉 and A are defined as

|t〉 =
1

3
√
W

∑
w∈F0

|w〉 and A =
∑

w∈F0,j∈[n]

|w〉〈j, wj | ⊗ |vw,j〉 (9)
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and Π(s) = I−Π(s) ∈ L(CI) where Π(s) is defined in Equation 1.

Matrix-vector products BG(s)|ψ〉 and B∗G′(s)|ψ
′〉 can be interpreted as operating on the sets of column vectors

separately. That is, let |ψ〉 = |ψ1〉 + |ψ2〉 where |ψ1〉 := α|0〉 operates on column µ0 and |ψ2〉 operates on
columns I. Similarly, let |ψ′〉 = |ψ′1〉+ |ψ′2〉 where |ψ′1〉 and |ψ′2〉 operates on columns F0 and I ′.

Example 4.5. Let us turn the canonical span program of the parity function, shown in Example 4.4, into
its corresponding bipartite graphs. The matrices BG(x) and BG′(w) are then defined as follows for strings
x = 10 and w = 00 which evaluates to true and false respectively on ⊕.

BG(x) =

µ0 I


1 0 1 0 1

F01 1 0 1 0
0 1 0 0 0

I ′
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

B∗G′(w) =

F0 I ′


0 1 0 0 0 0

I
1 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 1

.

These corresponds to the bipartite graphs shown Figure 1 and Figure 2.

1

3

√

W

I ′

I

F0

µ0

BG(w)BG(x)

1

3

√

W

1

3

√

W

1

3

√

W

Figure 1: The bipartite graphs corresponding to the true biadjacency matrix. All unmarked edges have
weight one. The matix vector product BG(x)|φ〉 is equivalent to assigning weights to the open dots in the
picture. In order to find an eigenvalue zero eigenvector |φ〉 of BG(x), the assignment of weights must ensure
the neighbours of every solid dot sums to zero. Observe that BG(x), with ⊕(x) = 1, has an eigenvalue zero
eigenvector while BG(w), with ⊕(w) = 0, does not.

I
′

I

F0

BG′(w)BG′(x)

Figure 2: The bipartite graphs corresponding to the false biadjacency matrix. As opposed to the above,
BG′(x), with ⊕(x) = 1, does not have an eigenvalue zero eigenvector while BG′(w), with ⊕(w) = 0, does.

Lemma 4.6. (Spectral Gap of Eigenvalue Zero Eigenvectors.) If f(x) = 1, then the vector

|ψ〉 = |ψ1〉+ |ψ2〉 where |ψ1〉 = −3
√
W |0〉 and |ψ2〉 =

∑
j∈[n]

|j, xj〉⊗ |vx,j〉
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is an eigenvalue zero eigenvector of BG(x). Further, |ψ〉 satisfies |〈0|ψ〉|2 ≥ 9 ‖|ψ〉‖2 /10.

If instead f(w) = 0, then the vector

|ψ′〉 = |ψ′1〉+ |ψ′2〉 where |ψ′1〉 = −|w〉 and |ψ′2〉 =
∑
j∈[n]

|j, wj〉⊗ |vw,j〉

is an eigenvalue zero eigenvector of BG′(w). Further, |ψ′〉 satisfies |〈t|ψ′〉|2 ≥ ‖|ψ〉‖2 /(9W (W + 1)).

Proof. Let x ∈ F1 and w ∈ F0. Observe that BG(x)|ψ1〉 is the vector with |F0| non-zero entries followed
by |I ′| zeros. Since f(x) = 1, there exists a linear combination of the columns of A which sum to |t〉.
Choosing this set of columns will also ensure that the rows indexed by I ′ sum to zero as an entry of
|ψ2〉 is non-zero only when the associated column of Π(x) is. Further |〈0|ψ〉|2 = ‖|ψ1〉‖2 = 9W , while

‖|ψ〉‖2 = ‖|ψ1〉‖2 + ‖|ψ2〉‖2 = 9W + W by definition. Similarly, observe that B∗G′(w)|ψ
′
1〉 multiplies the

column associated with w among the rows of A by negative one, while B∗G′(w)|ψ
′
2〉 is exactly this same

column. Further, |〈t|ψ′〉|2 = 1/(9W ) and ‖|ψ′〉‖2 = ‖|ψ′1〉‖
2

+ ‖|ψ′2〉‖
2

= 1 +W .

5 Optimal Quantum Query Algorithms for Span Programs

Let |t〉 and A, as shown in Equation 9, be the matrix of the canonical span program. Further let G be the
associated bipartite graph with biadjacency matrix BG and adjacency matrix AG as follows

BG =
µ0 I
[ ]|t〉 A F0 and AG =

F0 µ0 I[ ]0 |t〉 A F0

〈t| 0 0 µ0

A∗ 0 0 I

(10)

Let ∆ ∈ L(CF0∪{µ0}∪I) be the orthogonal projection onto the span of all eigenvalue zero eigenvectors of AG.
For a string s ∈ {0, 1}n, let Πs ∈ L(CF0∪{µ0}∪I) be

Πs = I−
∑

j∈[n],k∈[m]

|j, sj , k〉〈j, sj , k|.

The graph G(s) has biadjacency matrix BG(s) (from Equation 8) and adjacency matrix AG(s).

BG(s) =

µ0 I[ ]
|t〉 A F0

0 Π(s) I ′
and AG(s) =

F0 I ′ µ0 I


0 0 |t〉 A F0

0 0 0 Π(s) I ′

〈t| 0 0 0 µ0

A∗ Π(s) 0 0 I

(11)

Note that AG(s) ∈ L(CF0∪I′∪{µ0}∪I) contains AG and the additional vertices of I ′. Further I − Πs ∈
L(CF0∪{µ0}∪I) contains Π(s) ∈ L(CI) as a subgraph and is everywhere else all zeros.

Define Us ∈ L(CF0∪{µ0}∪I) as
Us = (2Πs − I)(2∆− I),

the matrix which reflects a vector across ∆ then across Πs. Observe that ∆ is independent of the input
s, while Πs requires one query of the quantum f -oracle. The following are three different quantum query
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algorithms which computes f(s) with query complexity W .

Algorithm 1: Phase Estimation

Initialize state |0〉 ∈ CF0∪µ0∪I

δp ← 1
100W

δe ← 1
10

Run phase estimation on Us with precision δp and error δe
Return 1 if phase estimation returns zero, otherwise return 0

Algorithm 2: Quantum Search

Initialize state |+〉⊗ |0〉 ∈ C2⊗CF0∪µ0∪I

T ←random integer in {1, ..., d100W e}
Apply |0〉〈0| ⊗ I + |1〉〈1| ⊗UTx to initial state
Measure the first qubit in the Hadamard basis
Return 1 if the value is |+〉, otherwise return 0

Algorithm 3: Quantum Search without Register

Initialize state |0〉 ∈ CF0∪µ0∪I

T ←random integer in {1, ..., d100W e}
Apply UTx to |0〉
Measure UTx |0〉 in the standard basis
Return 1 if the value is |0〉, otherwise return 0

We will omit the analysis for Algorithm 3 here as is quite complex and the algorithm itself has equivalent
quantum query complexity to the other two. Instead, we will focus our attention on the analysis for the first
two algorithms.

The following lemma about the “effective spectral” gap of AG(s) will be necessary for the analysis. Its
intuition and proof can be found in Appendix B.

Lemma 5.1. (Effective Spectral Gap.) If f(s) = 1 then AG(s) has an eigenvalue zero eigenvector |ψ〉 with

|〈0|ψ〉|2 ≥ 9 ‖|ψ〉‖2 /10.

If f(w) = 0 and {|α〉} is the set of all orthonormal eigenvectors with corresponding eigenvalues ρ(α) of
AG(s), then for any c ≥ 0 ∑

α:|ρ(α)|≤c/W

|〈α|0〉|2 ≤ 72c2
(

1 +
1

W

)
.

5.1 Spectral Gap for Us

Using Lemma 5.1, we prove a spectral gap on the eigenvectors of the matrix Us.

Lemma 5.2. If f(s) = 1 then Us has an eigenvalue one eigenvector |ϕ〉 with |〈0|ϕ〉|2/ ‖|ϕ〉‖2 ≥ 9/10.

If f(s) = 0 and {|β〉} is a set of orthonormal eigenvectors of Us with corresponding eigenvalues eiθ(β), where
θ(β) ∈ (−π, π]. Then for any Θ ≥ 0

∑
β:|θ(β)|≤Θ

|〈β|0〉|2 ≤
(

2
√

6ΘW +
Θ

2

)2
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A key tool used to prove Lemma 5.2 is the fact that we can rotate the basis of Us so that it becomes
represented by a block-diagonal matrix, where the blocks are of maximum dimension two3. This was proved
by Szegedy [Sze04]. Nagaj, Wocjan, and Zhang [NWZ09] gave a different proof that follows from a Lemma
of Jordan [Jor75]:

Lemma 5.3. ([Jor75]) Given projections Πs and ∆ in Hilbert space H, there exists a decomposition of H
into orthogonal one-dimensional and two-dimensional subspaces invariant under Πs and ∆. On the two-
dimensional subspaces, Πs and ∆ are rank-one projectors.

Lemma 5.3 implies that H can be decomposed into a set of one-dimensional subspaces {Ti} and a set of
two-dimensional subspaces {Si}. Each one-dimensional subspace Ti is spanned by a vector |vi〉 for which
there exists b, c ∈ {0, 1} such that ∆|vi〉 = b|vi〉 and Πs|vi〉 = c|vi〉: that is, each of ∆ and Πs either act as
the identity on Ti or are orthogonal to Ti. Each two-dimensional subspace Si is spanned by vectors |vi〉, |v⊥i 〉
such that ∆|vi〉 = |vi〉 and ∆|v⊥i 〉 = 0. Also, Si is spanned by vectors |wi〉, |w⊥i 〉 such that Πs|wi〉 = |wi〉 and
Πs|w⊥i 〉 = 0. Let θi = 2 arccos |〈vi|wi〉|. Then,

|wi〉 = cos
θi
2
|vi〉+ sin

θi
2
|v⊥i 〉 |w⊥i 〉 = − sin

θi
2
|vi〉+ cos

θi
2
|v⊥i 〉

Theorem 5.4. ([Sze04; NWZ09]) Let {Si}, {Ti} be the decomposition of Πs and ∆ given by Lemma 5.3.

Then Us has eigenvalues e∓iθi corresponding to
|vi〉±i|v⊥i 〉√

2
on each two-dimensional subspace Si, and eigen-

value either 1 or -1 on each one-dimensional subspace Ti.

Proof. On one-dimensional subspace Ti, each individual reflection multiplies a vector by ±1, so both reflec-
tions in succession do as well. For the rest of the proof, consider a two-dimensional subspace Si. By the
above relationship between {|vi〉, |v⊥i 〉} and {|wi〉, |w⊥i 〉}, we get the following:[

|wi〉
|w⊥i 〉

]
=

[
cos θi2 sin θi

2

− sin θi
2 cos θi2

] [
|vi〉
|v⊥i 〉

]
Recall that σy =

[
0 −i
i 0

]
is the Pauli Y matrix, which has eigenvalues 1 and −1 corresponding to eigenvectors

|φ+
y 〉 = 1√

2
[ 1
i ] and |φ−y 〉 = 1√

2

[
1
−i
]
, respectively.[

cos θi2 sin θi
2

− sin θi
2 cos θi2

]
= cos

θi
2

[
1 0
0 1

]
+ i sin

θi
2

[
0 −i
i 0

]
=

cos θi2
2

([
1 −i
i 1

]
+

[
1 i
−i 1

])
+
i sin θi

2

2

([
1 −i
i 1

]
−
[

1 i
−i 1

])
=

(
cos θi2

2
+
i sin θi

2

2

)[
1 −i
i 1

]
+

(
cos θi2

2
−
i sin θi

2

2

)[
1 i
−i 1

]
= eiθi/2

1

2

[
1 −i
i 1

]
+ e−iθi/2

1

2

[
1 i
−i 1

]
= eiθi/2|φ+

y 〉〈φ+
y |+ e−iθi/2|φ−y 〉〈φ−y | = e(iθ/2)σy

In the basis {|vi〉, |v⊥i 〉}, we have that (2∆ − I) = [ 2 0
0 0 ] − [ 1 0

0 1 ] =
[

1 0
0 −1

]
= σz, where σz is the Pauli Z

matrix. Similarly, in the basis {|wi〉, |w⊥i 〉}, we have that (2Π(s) − I) = σz. Then, in the basis {|vi〉, |v⊥i 〉},
Us = (2Π(s)− I)(2∆− I) = e(−iθi/2)σyσze

(iθi/2)σyσz = e(−iθi/2)σye(−iθi/2)σyσzσz = e(−iθi)σy , where we used
the fact that σy and σz anticommute (σyσz = −σyσz) and the fact that σzσz = I. Therefore, the eigenvalues

are e−iθi and eiθi , corresponding to eigenvectors |φ+
y 〉 =

|vi〉+i|v⊥i 〉√
2

and |φ−y 〉 =
|vi〉−i|v⊥i 〉√

2
respectively.

Now we can prove Lemma 5.2.
3We can do this for any unitary made up of two reflections

14



Proof. Let {|β〉} be the set of eigenvectors given by the decomposition of Theorem 5.4. Since ∆ is the
projection into the nullspace of AG, AG∆ = 0. Thus AG(s)(∆ ⊕ I) = T (I − Πs)⊗(I2) for a permutation

matrix T since G is a subgraph of AG(s) and Π(s) is a submatrix of I−Πs from Equation 10 and Equation 11.

First consider the case where f(s) = 1. Take |ψ〉 to be the eigenvalue zero eigenvector of AG(s) such that

|〈0|ψ〉|2 ≥ 9 ‖|ψ〉‖2 /10 from Lemma 5.1. Obtain |φ〉 from |ψ〉 by restricting to the entries corresponding to
the index sets F0 ∪ {µ0} ∪ I. Since |ψ〉 is an eigenvalue zero eigenvector of AG(s) (see Lemma 4.6), it is not
supported on the removed entries so ‖|ψ〉‖ = ‖|φ〉‖ and |φ〉 is an eigenvalue zero eigenvector of AG. Thus
∆|φ〉 = |φ〉. Since Πs is the identity matrix on the support of |ψ〉, Πs|φ〉 = |φ〉. Together Us|φ〉 = |φ〉.

Now consider the case where f(s) = 0. Let |ζ〉 =
∑
β:|θ(β)|≤Θ |β〉〈β|0〉: this is the projection of |0〉 onto

low-angle subspaces of Us. We want to bound
∑
β:|θ(β)|≤Θ |〈β|0〉|2 =

∑
β:|θ(β)|≤Θ〈0|β〉〈β|0〉 = 〈0|ζ〉. We will

find it more convenient to bound |〈0|ζ̂〉|2 = 〈0|ζ〉, where |ζ̂〉 is the normalized vector |ζ〉/ ‖|ζ〉‖.

Observe that |ζ̂〉 is not supported on any eigenvectors |β〉 where θ(β) = 0. Without loss of generality,
θ(β) = 0 only when |β〉 is in a one-dimensional subspace Ti with eigenvalue one. Then (2Πs−I) and (2∆−I)
either both reflect |β〉 or they both don’t. In the first case, Πs|β〉 = ∆|β〉 = 0, so 〈0|β〉 = 〈0|Πs|β〉 = 0
because Πs|0〉 = |0〉. In the second case, Πs|β〉 = ∆|β〉 = |β〉 and so AG(x)|β〉 = AG(x)∆|β〉 = T (I−Πs)|β〉 =
T (β − β) = 0, so by the f(x) = 0 case of Lemma 5.1 with c = 0 we have that 〈0|β〉 = 0.

The observation above implies that if we consider Θ < π (the Lemma is trivial otherwise), eiθβ 6= ±1 for the

|β〉 in the support of |ζ̂〉, and so we can restrict our analysis to just the two-dimensional subspaces of Us.

We now split 〈0|ζ̂〉:

〈0|ζ̂〉 = 〈0|∆ + (I−∆)|ζ̂〉

= 〈0|∆|ζ̂〉+ 〈0|Πs(I−∆)|ζ̂〉 (Πs|0〉 = |0〉)

≤ |〈0|∆|ζ̂〉|+ |〈0|Πs(I−∆)|ζ̂〉| (by the triangle inequality)

≤ |〈0|∆|ζ̂〉|+ ‖Πs(I−∆)|ζ̂〉‖

Now our goal is to bound both of the values in the last expression. First we bound ‖Πs(I−∆)|ζ̂〉‖.

Given an eigenvector |β〉 in the support of |ζ̂〉, let | − β〉 be the other eigenvector in the two-dimensional

subspace containing |β〉. Note that θ(β) = −θ(−β). Let |ζ̂〉 =
∑
β cβ |β〉, where here the sum is over all

eigenvectors4. Then ‖Πs(I−∆)|ζ̂〉‖2 = ‖
∑
β Πs(I−∆)cβ |β〉‖2. Thanks to Theorem 5.4, we can break this

summation up into pairs.

‖Πs(I−∆)|ζ̂〉‖2 =
∑

β:θ(β)>0

‖Πs(I−∆)(cβ |β〉+ c−β | − β〉)‖2

=
∑

Si:θi 6=0

∥∥∥∥ i√
2

(c−β − cβ)Πs|v⊥i 〉
∥∥∥∥2 (

rewrite |β〉, | − β〉 in terms of |vi〉, |v⊥i 〉
)

=
∑

Si:θi 6=0

∥∥∥∥ i√
2

(c−β − cβ) sin
θi
2
|wi〉

∥∥∥∥2

(change of basis)

=
∑

β:θ(β)>0

(
sin

θ(β)

2

)2 ∥∥∥∥ i√
2

(c−β − cβ)|wi〉
∥∥∥∥2

≤
∑

β:θ(β)>0

(
sin

θ(β)

2

)2

≤
(

Θ

2

)2

(sin θ ≤ θ for the values considered)

4Not just the ones in the support of |ζ̂〉
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Next we bound the term |〈0|∆|ζ̂〉 which we will write as |〈0|w〉|‖∆|ζ̂〉‖ where |w〉 = ∆|ζ̂〉/‖∆|ζ̂〉‖ is the

normalized projection of the vector |ζ̂〉 onto span of the eigenvalue zero eigenvectors of AG. We will work
exclusively with |w〉. First we bound the magnitude of the vector

∥∥AG(x)|w〉
∥∥, then decompose |w〉 into its

components in the space of “small” and “large” eigenvalue eigenvectors of AG(x) for particular choices of
“small” and “large”.

‖AG(x)∆|ζ̂〉‖2 = ‖(I−Πs)∆|ζ̂〉‖2

=
∑

Si:θi 6=0

∥∥∥∥ i√
2

(c−β − cβ)∆|v⊥i 〉
∥∥∥∥2 (

rewrite |β〉, | − β〉 in terms of |vi〉, |v⊥i 〉
)

=
∑

β:θ(β)≥0

(
sin

θ(β)

2

)2 ∥∥∥∥ i√
2

(c−β − cβ |wi〉
∥∥∥∥2

(change of basis)

≤
(

Θ

2

)2

‖∆|ζ̂〉‖2.

By the definition of |w〉, we have ∥∥AG(x)|w〉
∥∥2

=
‖AG(x)∆|ζ̂〉‖2

‖∆|ζ̂〉‖2
≤ Θ

2
.

For a fixed d, to be determined later, let |w〉 = |wsmall〉+ |wbig〉 where

|wsmall〉 =
∑

α:|ρ(α)|≤dΘ/2

|α〉〈α|w〉 and |wbig〉 =
∑

α:|ρ(α)|>dΘ/2

|α〉〈α|w〉.

Thus we have
|〈0|∆|ζ̂〉 = |〈0|w〉|

∥∥∥∆|ζ̂〉
∥∥∥ ≤ |〈0|w〉| ≤ |〈0|wsmall〉|+ |〈0|wbig〉|

where the equality is by definition, the first inequality is due to the fact that the projection of the unit vector
|ζ̂〉, and the second is by triangle inequality.

Bound |〈0|w〉| as follows:

|〈0|wsmall〉|2 =

 ∑
α:|ρ(α)|≤dΘ/2

〈0|α〉〈α|w〉

2

≤

 ∑
α:|ρ(α)|≤dΘ/2

|〈0|α〉|2
 ·

 ∑
α:|ρ(α)|≤dΘ/2

|〈α|w〉|2
 (Cauchy-Schwartz)

=

 ∑
α:|ρ(α)|≤dΘ/2

|〈0|α〉|2
 ‖|wsmall〉‖2 (definition of |wsmall〉)

≤ 72c2
(

1 +
1

W

)
‖|wsmall〉‖2

(
Lemma 5.1 with c =

dΘW

2

)
≤ 6dΘW (W ≥ 1 and |w〉 is normalized)

We further have AG(x)|w〉 =
∑
α ρ(α)|α〉〈α|w〉 so(

Θ

2

)2

≥
∥∥AG(x)|w〉

∥∥2

=
∥∥AG(x)|wsmall〉

∥∥2
+
∥∥AG(x)|wbig〉

∥∥2
(orthogonality of |α〉)

≥ d2

(
Θ

2

)2

‖|wbig〉‖2

16



Thus ‖|wbig〉‖ ≤ 1/d. Since |0〉 is a column of the identity matrix, 〈0|wbig〉 ≤ ‖|wbig〉‖. Together we have√ ∑
β:|θ(β)|≤Θ

|〈β|0〉|2 = 〈0|ζ̂〉 ≤ |〈0|∆|ζ̂〉|+ ‖Πs(I−∆)|ζ̂〉‖ ≤ |〈0|wsmall〉|+ |〈0|wbig〉|+
Θ

2
≤ 6dΘW +

1

d
+

Θ

2
.

Choosing d = 1/
√

6ΘW , we find the bound to be 2
√

6ΘW + Θ/2.

5.2 Analysis of the Algorithms

Given the spectral gap for Us given in Lemma 5.2, we can analyze the algorithms.

Algorithm 1 measures the phase of Us with input |0〉, which is in general a superposition of eigenvectors of
Us. If f(s) = 1 then by Lemma 5.2 most of the amplitude of |0〉 is in the direction of an eigenvector with
phase zero, and so the likelihood of measuring phase zero is at least 9/10 minus the error δe, which gives a
probability of at least 4/5. If f(s) = 0, then if we set Θ to be the precision δp then only a very small amount
of the amplitude of |0〉 is in the direction of eigenvectors with phase zero: by Lemma 5.2, the algorithm will
measure of a phase of zero with probability at most δe + (2

√
6δpW + δp/2)2 < 2/5.

Algorithm 2 prepares the state |ϕ〉 = 1√
2
(|0〉|0〉+|1〉UTs |0〉) and measures the first qubit in the basis {|+〉, |−〉},

which is equivalent to measuring the first qubit ofH|ϕ〉 = 1
2 (|0〉|0〉+|1〉0+|0〉UTs |0〉−|1〉UTx |0〉) in the standard

basis. The first qubit of H|ϕ〉 has amplitude 1
2 + 1

2 〈0|U
T
s |0〉 in the |0〉 direction, and so we will measure |0〉

with probability 1
4‖(I + UTs )|0〉‖2. When f(s) = 1, this probability will be at least 9/10 regardless of T .

When f(s) = 0,

E
T∈[τ ]

[
1

4

∥∥(I + UTs
)
|0〉
∥∥2
]

= E
T∈[τ ]

1

4

∑
β

|1 + exp(iθ(β)T )|2|〈0|β〉|2


=
1

4

∑
β

|〈0|β〉|2
τ∑

T=1

(2 + 2 exp(iθ(β)T ))

τ

=
1

4

∑
β

|〈0|β〉|2
(

2 +
1

τ

τ∑
T=1

2 exp(iθ(β)T )

)

=
1

4

∑
β

|〈0|β〉|2
(

2 +
1

τ

(
τ∑

T=−τ
exp(iθ(β)T )− exp(iθ(β) · 0)

))

=
1

4

∑
β

|〈0|β〉|2
(

2 +
1

τ

(
exp(iθ(β)(τ + 1))− exp(−iθ(β)τ)

eiθ(β) − 1
− 1

))

We let Θ = 1/(50W ) and define ν = (2
√

6ΘW + Θ/2)2. Divide the |β〉 by their eigenvalues. For θ(β) ≤ Θ,
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we use Lemma 5.2 to bound the terms in the sum by ν. Next consider those |β〉 such that θ(β) > Θ.∑
|β〉:θ(β)>Θ

|〈0|β〉|2
(

1

2
+

1

4τ

(
exp(iθ(β)(τ + 1))− exp(−iθ(β)τ)

eiθ(β) − 1
− 1

))

≤ (1− ν) ·
(

1

2
+

1

4τ

(
exp(iθ(β)(τ + 1))− exp(−iθ(β)τ)

eiθ(β) − 1
− 1

))
= (1− ν) ·

(
1

2
+

1

4τ

(
exp(iΘ(τ + 1))− exp(−iΘτ)− exp(iΘ) + 1

exp(iΘ)− 1

))
= (1− ν) ·

(
1

2
+

1

4τ

(
sin(Θ(τ + 1/2))− sin(Θ/2)

sin(Θ/2)

))
= (1− ν) ·

(
1

2
+

1

4τ sin(Θ/2)

)
(Θ ∈ (0, π])

Thus algorithm two outputs 1 with probability at most ν+(1−ν)·(1/2+1/(4τ sin(Θ/2)). When τ = d100W e
and W > 1 this probability is at most 88%.

5.2.1 Analysis of Algorithm 3

The analysis of Algorithm 3 requires a bit more work so we will devote the remainder of the survey to this
task. We want to show a separation between the probability that Algorithm 3 outputs 1 when f(x) = 1 and
when f(x) = 0. In particular we show that the probability is greater than 64% and 61% in the former and
latter case respectively.

Let τ = d105W e. The probability that the algorithm outputs one is

p = E
T∈[τ ]

[
|〈0|UTx |0〉|2

]
= E
T∈[τ ]

∣∣∣∣∣∣
∑
β

eiθ(β)T 〈β|0〉|2
∣∣∣∣∣∣
2

. (12)
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A Lagrangian Duality

Consider the following objective function:

Minimize f0(|x〉)
Subject to fi(|x〉) ≤ 0 for i ∈ [m]

hj(|x〉) = 0 for j ∈ [p]

for x in some domain D ⊂ Rn. Then the associated Lagrangian L : Rn × Rm × Rj is the function

L(|x〉, |λ〉, |ν〉) = f0(x) +

m∑
i=1

λifi(|x〉) +

p∑
j=1

νjhj(|x〉).

Further, the Lagrangian dual function is

g(|λ〉, |ν〉) = inf
|x〉∈D

F (|x〉, |λ〉, |ν〉).

Observe that g(|λ〉, |ν〉) is a lower bound for the optimal value p∗ of the objective function above when
|λ〉 ≥ 0. Let |x〉 be any feasible solution, then fi(|x〉) ≤ 0 and hj(|x〉) = 0. Thus

p∗ ≥ f0(|x〉) ≥ f0(|x〉) +

m∑
i=1

λifi(|x〉) +

p∑
j=1

νjhj(|x〉) = L(|x〉, |λ〉, |ν〉) ≥ inf
|x〉∈D

F (|x〉, |λ〉, |ν〉) = g(|λ〉, |ν〉).

The best lower bound is obtained by maximizing over the dual function.

In our case

Minimize t

Subject to
∑
wj 6=xj

〈w, j|X|x, j〉 = 1 for all (x,w) ∈ ∆, wj 6= xj∑
j∈[n]

〈s, j|X|s, j〉 ≤ t for all s ∈ {0, 1}n

where X � 0. The Lagrangian has one variable for every constraint. Let Y � 0 be the variable for the
constraint X � 0, αw,x and βs ≥ 0 be the variables for the equality and inequality constraints respectively.
Then

L = L(Y, |α〉, |β〉;X, t) = t− 〈X|Y 〉+
∑

(x,w)∈∆,wj 6=xj

αx,w (1− 〈w, j|X|x, j〉)−
∑

|s〉∈{0,1}n
βs (t− 〈s, j|X|s, j〉)

with dual function
g(Y, |α〉, |β〉) = inf

X,t
L(Y, |α〉, |β〉;X, t).

Since the infimum is taken over all X � 0 and values t, there exists choices of Y , |α〉 and |β〉 such that
infX�0,t L(Y, |α〉, |β〉) = −∞. To remove these values from consideration, we find the implicit constraints.

Fix Y, |α〉, |β〉, X and rewrite L interms of t.

L = t

1−
∑

|s〉∈{0,1}n
βs

− 〈X|Y 〉+
∑

(x,w)∈∆,wj 6=xj

αx,w (1− 〈w, j|X|x, j〉) +
∑

|s〉∈{0,1}n
βs〈s, j|X|s, j〉.
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Since the last three terms are fixed, by taking t→ −∞, L→ −∞. Thus we require

1 =
∑

|s〉∈{0,1}n
βs.

Similarly, fix Y, |α〉, |β〉, t and rewrite L interms of X.

L = 〈X|Z − Y 〉+ t+
∑

(x,w)∈∆

αx,w − t
∑

|s〉∈{0,1}n
βs

where Z =
∑
|s〉∈{0,1}n βs|s〉〈s| −

∑
(x,w)∈∆,wj 6=xj αx,w|w〉〈x|. Again, if 〈X|Z−Y 〉 6= 0, then X can be chosen

such that L→ −∞. Thus Z = Y . Since Y � 0, we can simplify this to Z � 0.

B Spectral Analysis of Adjacency and Biadjacency Matrices

Let G be a weighted bipartite graph with biadjacency matrix BG ∈ L(CU ,CT ) and weighted adjacency
matrix AG ∈ L(CT∪U ). Further let |t〉 ∈ CT and G′ be the graph with biadjacency matrix

BG′ =
µ0 U
[ ]|t〉 BG T

and adjacency graph AG′ . To understand the eigenvectors of the modified adjacency matrix AG′ , we need
the following theorem about eigenvectors of a PSD matrix.

Theorem B.1. (Spectral Bounds for PSD Matrices, Theorem 8.9 [RS12].) Let X ∈ L(V ) with X � 0,
|t〉 ∈ V , and X ′ = X + |t〉〈t|. Further, let {|β〉} be the eigenvectors of X ′ with corresponding eigenvalue

θ(β) ≥ 0. If there exists a vector |ψ〉 in the null-space of X with |〈t|ψ〉|2 ≥ δ ‖|ψ〉‖2, then for any γ ≥ 0∑
β:|θ(β)|≤γ,〈t|β〉6=0

|〈t|β〉|2

λ(β)
≤ 4γ

δ
.

Note that this sum is well defined since θ(β) ≥ 0 whenever 〈t|b〉 6= 0 then 〈β|X ′|β〉 = 〈β|X|β〉+‖〈t|β〉‖2 > 0.

Theorem B.2. (Spectral Properties of Small Eigenvalue Eigenvectors.) Let G, BG, AG, G′, BG′ , and AG′

be as before. Suppose for some δ > 0, AG has an eigenvalue zero eigenvector such that

|〈t|ψT 〉|2 ≥ δ ‖|ψ〉‖2 .

Let {|α〉} be the complete set of orthonormal eigenvectors of AG′ with corresponding eigenvalues ρ(α). Fur-
ther, let |0〉 be the vector [0, 1, 0]> ∈ CT∪{µ0}∪U . Then for all γ > 0, we have∑

α:|ρ(α)|≤γ

|〈α|0〉|2 ≤ 8γ2

δ
.

Proof. The structure of the proof is as follows. We begin by reviewing relationships between the eigenvectors
and eigenvalues of the adjacency graph AG and the biadjacency graph BG. Given an eigenvector of AG, we
will relate this to the eigenvectors of the modified adjacency matrix AG′ and modified biadjacency graph
BG′ . Central to this analysis will be the study of PSD matrix BG′B

∗
G′ .

Let G be a graph and AG and BG be its adjacency and biadjacency matrices as described in the theorem
statement. Let |ψ〉 = (|ψT 〉, |ψU 〉) ∈ CT∪U be an eigenvector of AG with associated eigenvalue ρ > 0 i.e.[

0 BG
B∗G 0

]
·
[
|ψT 〉
|ψU 〉

]
= ρ

[
|ψT 〉
|ψU 〉

]
.
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Then we obtain the identities BG|ψU 〉 = ρ|ψT 〉 and B∗G|ψT 〉 = ρ|ψU 〉. By negating these identities, we
observe that (|ψT 〉,−|ψU 〉) is also an eigenvector of AG with associated eigenvalue −ρ. Observe further that
|ψT 〉, defined to be 1

ρBG|ψU 〉, is an eigenvector of BGB
∗
G with eigenvalue ρ2. Similarly |ψU 〉, defined to be

1
ρB
∗
G|ψT 〉, is an eigenvector of B∗GBG with eigenvalue ρ2. If, instead, we begin with an eigenvector |φ〉 ∈ CT

of BGB
∗
G with eigenvalue λ, then B∗G|φ〉 ∈ CU is an eigenvalue of B∗GBG with eigenvalue λ then

B∗GBG (B∗G|φ〉) = λB∗G|φ〉.

The pair (|φ〉, ±1√
λ
B∗G|φ〉) are eigenvectors of AG with eigenvalues ±

√
λ since, in the positive case for example,

BG

(
1√
λ
B∗G|φ〉

)
=
√
λ|φ〉 and B∗G|φ〉 =

√
λ

(
1√
λ
B∗G|φ〉

)
since |φ〉 is an eigenvector of BGB

∗
G with eigenvector λ for the former.

Let (|ψT 〉, 0), an eigenvector of AG, be the input to our theorem. Note that |〈t|ψT 〉|2 ≥ δ ‖|ψ〉‖2 and
B∗G|ψT 〉 = 0. We would like to bound the magnitude of∑

α:|ρ(α)|≤γ

|〈α|0〉|2

where {|α〉} is a complete set of orthonormal eigenvectors of AG′ with associated eigenvalue ρ(α) and |0〉 is
the indicator vector for entry corresponding to µ0. First we show that the eigenvalue zero eigenvectors of
AG′ are unsupported on µ0 so will not contribute to this sum. We bound |〈α|0〉|2 for eigenvectors |α〉 with
0 < ρ(α) ≤ γ using Theorem B.1 by considering the eigenvectors of BGB

∗
G.

Let |ζ〉 = (|ζT 〉, ζµ0
, |ζU 〉) be an eigenvalue zero eigenvector of AG′ . Then modified biadjacency matrix BG′

must satisfy

BG′(ζµ0
, |ζU 〉) =

[
|t〉 BG

]
·
[
ζµ0

|ζU 〉

]
= ζµ0

|t〉+BG|ζU 〉 = 0.

By multiplying both sides by 〈ψT |, we have

ζµ0
〈ψT |t〉+ 〈ψT |BG|ζT 〉 = 0,

since B∗G|ψT 〉 = 0 and 〈t|ψT 〉 > 0, ζµ0
= 0. Thus eigenvalue zero eigenvectors of AG′ are orthogonal to |0〉.

It remains to consider those eigenvectors |α〉 = (|αT 〉, αµ0
, |αU 〉) of AG′ with ρ(α) > 0. First, using the

definition of eigenvectors and the property that AG′ |0〉 = |t〉, we have

ρ(α)〈α|0〉 = 〈α|AG′ |0〉 = 〈αT |t〉.

Substituting this into our desired sum, we obtain∑
α:0<|ρ(α)|≤γ

|〈α|0〉|2 =
∑

α:0<|ρ(α)|≤γ

|〈αT |t〉|2

ρ(α)2
.

Let BG′B
∗
G′ be a matrix with eigenvectors {|β〉} and corresponding eigenvalues θ(β). By the relationship

between the eigenvalues and eigenvectors of AG′ and BG′ considered above, each |β〉 with θ(β) corresponds

to two eigenvectors of AG′ with eigenvalue

(
|β〉, ±1√

λ(β)
B∗G′ |β〉

)
with ±

√
θ(β). Thus

∑
α:0<|ρ(α)|≤γ

|〈αT |t〉|2

ρ(α)2
= 2

∑
β:θ(β)≤γ2,θ(β) 6=0

|〈β|t〉|2

θ(β)
.

Using Theorem B.1 with X = BG′B
∗
G′ = BGB

∗
G − |t〉〈t| and |ψT 〉 gives us the bound∑

α:|ρ(α)|≤γ

|〈α|0〉|2 = 2
∑

β:θ(β)≤γ2,θ(β)6=0

|〈β|t〉|2

θ(β)
≤ 8γ2

δ

as required.
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Applying Theorem B.2 with δ = 1/(9W (W + 1)) and γ = c/W to Lemma 4.6 in the case where f(s) = 0,
we obtain the following Lemma 5.1.
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